Skip to main content
Log in

Superhydrophobic films for the protection of outdoor cultural heritage assets

Applied Physics A Aims and scope Submit manuscript

Cite this article

Abstract

A very simple method that can be used to impart superhydrophobicity to stone surfaces of monuments using common and low-cost materials that are already employed or are easy to be found by conservators is presented. A siloxane-nanoparticle dispersion is sprayed on a stone, and this process can result in the formation of a rough two-length-scale hierarchical structure that exhibits water repellent properties, provided that the nanoparticle concentration in the dispersion is higher than a critical value. Superhydrophobicity (static contact angle >150° and contact angle hysteresis <7°) is achieved, by this simple method (i) on the surfaces of three types of stones, Opuka, Božanovský and Hořický, which have been used for the restoration of the castle of Prague, (ii) using two poly (alkyl siloxane) products such as Rhodorsil 224 and Porosil VV plus, which are utilized by conservators and (iii) using common nanoparticles such as silica (SiO2), alumina (Al2O3), tin oxide (SnO2) and titanium oxide (TiO2). It is shown that the stone substrate and the nanoparticle size (5–50 nm) or type have almost no effect on the wettability of the superhydrophobic surfaces, as comparable contact angles were measured on the three stone substrates, treated with any siloxane-particle composite. Treatments of the stones with pure (hydrophobic) siloxanes and siloxane-SiO2 (superhydrophobic) composites result in comparable reductions of the water vapor permeability and the water amounts absorbed by capillarity. Consequently, the use of nanoparticles in the protective coatings does not have any obvious effect on the results of the aforementioned tests. However, the aesthetic appearance of the three stones, included in this study, is highly affected by the nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. W. Barthlott, C. Neinhuis, Planta 202, 1 (1997)

    Article  Google Scholar 

  2. S. Herminghaus, Europhys. Lett. 52, 165 (2000)

    Article  ADS  Google Scholar 

  3. P. Wagner, R. Fürstner, W. Barthlott, C. Neinhuis, J. Exp. Bot. 54, 1295 (2003)

    Article  Google Scholar 

  4. T. Sun, L. Feng, X. Gao, L. Jiang, Acc. Chem. Res. 38, 644 (2005)

    Article  Google Scholar 

  5. T. Wagner, C. Neinhuis, W. Barthlott, Acta Zool. (Stockholm) 77, 213 (1996)

    Article  Google Scholar 

  6. G.S. Watson, J.A. Watson, Appl. Surf. Sci. 235, 139 (2004)

    Article  ADS  Google Scholar 

  7. W. Lee, M.K. Jin, W.C. Yoo, J.K. Lee, Langmuir 20, 7665 (2004)

    Article  Google Scholar 

  8. W. Chen, A.Y. Fadeev, M.C. Hsieh, D. Öner, J. Youngblood, T.J. McCarthy, Langmuir 15, 3395 (1999)

    Article  Google Scholar 

  9. S.R. Coulson, I. Woodward, J.P.S. Badyal, S.A. Brewer, C.J. Willis, J. Phys. Chem. B 104, 8836 (2000)

    Article  Google Scholar 

  10. A.D. Tserepi, M.-E. Vlachopoulou, E. Gogolides, Nanotechnology 17, 3977 (2006)

    Article  ADS  Google Scholar 

  11. D. Öner, T.J. McCarthy, Langmuir 16, 7777 (2000)

    Article  Google Scholar 

  12. L. Gao, T.J. McCarthy, Langmuir 22, 2966 (2006)

    Article  Google Scholar 

  13. H.Y. Erbil, A.L. Demirel, Y. Avci, O. Mert, Science 299, 1377 (2003)

    Article  Google Scholar 

  14. H. Yabu, M. Takebayashi, M. Tanaka, M. Shimomura, Langmuir 21, 3235 (2005)

    Article  Google Scholar 

  15. M. Sun, C. Luo, L. Xu, H. Ji, Q. Ouyang, D. Yu, Y. Chen, Langmuir 21, 8978 (2005)

    Article  Google Scholar 

  16. R. Fürstner, W. Barthlott, C. Neinhuis, P. Walzel, Langmuir 21, 956 (2005)

    Article  Google Scholar 

  17. L. Zhang, Z. Zhou, B. Cheng, J.M. DeSimone, E.T. Samulski, Langmuir 22, 8576 (2006)

    Article  Google Scholar 

  18. N.J. Shirtcliffe, G. McHale, M.I. Newton, C.C. Perry, Langmuir 19, 5626 (2003)

    Article  Google Scholar 

  19. B. Mahltig, H. Böttcher, J. Sol-Gel Sci. Technol. 27, 43 (2003)

    Article  Google Scholar 

  20. M. Hikita, K. Tanaka, T. Nakamura, T. Kajiyama, A. Takahara, Langmuir 21, 7299 (2005)

    Article  Google Scholar 

  21. L. Gao, T.J. McCarthy, J. Am. Chem. Soc. 128, 9052 (2006)

    Article  Google Scholar 

  22. M. Ma, R.M. Hill, J.L. Lowery, S.V. Fridrikh, G.C. Rutledge, Langmuir 21, 5549 (2005)

    Article  Google Scholar 

  23. L. Zhai, C.F. Cebeci, R.E. Cohen, M.F. Rubner, Nano Lett. 4, 1349 (2004)

    Article  ADS  Google Scholar 

  24. T. Soeno, K. Inokuchi, S. Shiratori, Appl. Surf. Sci. 237, 543 (2004)

    ADS  Google Scholar 

  25. D. Lee, M.F. Rubner, R.E. Cohen, Nano Lett. 6, 2305 (2006)

    Article  ADS  Google Scholar 

  26. J. Bravo, L. Zhai, Z. Wu, R.E. Cohen, M.F. Rubner, Langmuir 23, 7293 (2007)

    Article  Google Scholar 

  27. H.-M. Bok, T.-Y. Shin, S. Park, Chem. Mater. 20, 2247 (2008)

    Article  Google Scholar 

  28. M. Motornov, R. Sheparovych, R. Lupitskyy, E. MacWilliams, S. Minko, Adv. Mater. 20, 200 (2008)

    Article  Google Scholar 

  29. C.-T. Hsieh, J.-M. Chen, R.-R. Kuo, T.-S. Lin, C.-F. Wu, Appl. Surf. Sci. 240, 318 (2005)

    Article  ADS  Google Scholar 

  30. E. Chibowski, L. Hołysz, K. Terpilowski, M. Jurak, Colloids Surf. A 291, 181 (2006)

    Article  Google Scholar 

  31. M.Y. Yüce, A.L. Demirel, F. Menzel, Langmuir 21, 5073 (2005)

    Article  Google Scholar 

  32. P.N. Manoudis, I. Karapanagiotis, A. Tsakalof, I. Zuburtikudis, C. Panayiotou, Langmuir 24, 11225 (2008)

    Article  Google Scholar 

  33. S. Li, H. Li, X. Wang, Y. Song, Y. Liu, L. Jiang, D. Zhu, J. Phys. Chem. B 106, 9274 (2002)

    Article  Google Scholar 

  34. K.K.S. Lau, J. Bico, K.B.K. Teo, M. Chhowalla, G.A.J. Amaratunga, W.I. Milne, G.H. McKinley, K.K. Gleason, Nano Lett. 3, 1701 (2003)

    Article  ADS  Google Scholar 

  35. L. Feng, S. Li, Y. Li, L. Zhang, J. Zhai, Y. Song, B. Liu, L. Zhiang, D. Zhu, Adv. Mater. 14, 1857 (2002)

    Article  Google Scholar 

  36. V. Zorba, E. Stratakis, M. Barberoglou, E. Spanakis, P. Tzanetakis, S.H. Anastasiadis, C. Fotakis, Adv. Mater. 20, 4049 (2008)

    Article  Google Scholar 

  37. V. Zorba, E. Stratakis, M. Barberoglou, E. Spanakis, P. Tzanetakis, C. Fotakis, Appl. Phys. A 93, 819 (2008)

    Article  ADS  Google Scholar 

  38. M. Zhou, H.F. Yang, B.J. Li, J. Dai, J.K. Di, E.L. Zhao, L. Cai, Appl. Phys. A (2008). doi:10.1007/s00339-008-4920-5

    Google Scholar 

  39. W. Xiao, Z. Huang, Z. He, Appl. Phys. Lett. 89, 083101 (2006)

    Article  ADS  Google Scholar 

  40. A. Nakajima, K. Hashimoto, T. Watanabe, Monatsh. Chem. 132, 31 (2001)

    Google Scholar 

  41. M. Callies, D. Quéré, Soft Matter 1, 55 (2005)

    Article  Google Scholar 

  42. L. Appolonia, V. Fassina, U. Matteoli, A.M. Mecchi, M.P. Nugari, D. Pinna, R. Peruzzi, O. Salvadori, U. Santamaria, A. Scala, P. Tiano, in Proceedings of International Colloquium on Methods of Evaluating Products for the Conservation of Porous Building Material in Monument Rome (1995)

  43. G. Allesandrini, M. Aglietto, V. Castelvetro, F. Ciardelli, R. Peruzzi, L. Toniolo, J. Appl. Polym. Sci. 76, 962 (2000)

    Article  Google Scholar 

  44. O. Chiantore, M. Lazzari, Polymer 42, 17 (2001)

    Article  Google Scholar 

  45. L. Toniolo, T. Poli, V. Castelvetro, A. Manariti, O. Chiantore, M. Lazzari, J. Cult. Herit. 3, 309 (2002)

    Article  Google Scholar 

  46. G.C. Borgia, M. Camati, F. Cerri, P. Fantazzinim, F. Piacenti, Stud. Conserv. 48, 217 (2003)

    Google Scholar 

  47. A. Tsakalof, P. Manoudis, I. Karapanagiotis, I. Chryssoulakis, C. Panayiotou, J. Cult. Herit. 8, 69 (2007)

    Article  Google Scholar 

  48. L. D’Arienzo, P. Scarfato, L. Incarnato, J. Cult. Herit. 9, 253 (2008)

    Article  Google Scholar 

  49. S. Nilpairach, S.T. Dubas, JMMM 18, 33 (2008)

    Google Scholar 

  50. P.N. Manoudis, A. Tsakalof, I. Karapanagiotis, I. Zuburtikudis, C. Panayiotou, Surf. Coat. Technol. 203, 1322 (2009)

    Article  Google Scholar 

  51. P. Kotlik, Stavební Materiály Historických Objektů: Materiály, Koroze, Sanace (ICT Prague, Praha, 1999)

    Google Scholar 

  52. V. Schütznerová-Havelková, Bull. Eng. Geol. Environ. 19, 374 (1979)

    Google Scholar 

  53. Compendium of RILEM Technical Recommendations, E&FN Spon (1994)

  54. M.D. Murray, B.W. Darvell, J. Phys. D, Appl. Phys. 23, 1150 (1990)

    Article  ADS  Google Scholar 

  55. R.N. Wenzel, Ind. Eng. Chem. 28, 988 (1936)

    Article  Google Scholar 

  56. A.B.D. Cassie, S. Baxter, Trans. Faraday Soc. 40, 546 (1944)

    Article  Google Scholar 

  57. D. Quéré, Physica A 313, 32 (2002)

    Article  ADS  Google Scholar 

  58. R.E. Johnson, R.H. Dettre, Adv. Chem. Ser. 43, 112 (1964)

    Article  Google Scholar 

  59. M. Morra, E. Occhiello, F. Garbassi, Langmuir 5, 872 (1989)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Karapanagiotis.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Manoudis, P.N., Karapanagiotis, I., Tsakalof, A. et al. Superhydrophobic films for the protection of outdoor cultural heritage assets. Appl. Phys. A 97, 351–360 (2009). https://doi.org/10.1007/s00339-009-5233-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-009-5233-z

PACS

Navigation