Skip to main content

Growth of tin oxide nanotubes by aerial carbothermal evaporation

Abstract

One-dimensional nanostructures of tin oxide nanotubes were fabricated by carbothermal evaporation at 900°C in air. The synthesized film was grown on Au-coated (100) Si substrate. Heterogeneous catalysis by Au/Sn droplets assisted the formation of the tin oxide nanotubes of less than 40 nm diameter at Sn vapor pressures around 1.4×10−7 Pa. In order to reduce the nanotube diameter further, an increase in the Sn vapor pressure by changing the source materials’ ratio seemed viable.

This is a preview of subscription content, access via your institution.

References

  1. Z.L. Wang, Appl. Phys. A 88, 7 (2007)

    Article  ADS  Google Scholar 

  2. Q.X. Zhao, P. Kalson, M. Willander, Appl. Phys. A 88, 27 (2007)

    Article  ADS  Google Scholar 

  3. X. Duan, C.M. Lieber, J. Am. Chem. Soc. 122, 188 (2000)

    Article  Google Scholar 

  4. P. Nguyen, S. Vaddiraju, M. Meyyappan, J. Electron. Mater. 35, 200 (2006)

    Article  ADS  Google Scholar 

  5. J. McBreen, S. Srivasan, A.C. Khandkar, B.V. Tilak, Electronic Materials and Process for Energy Conversions and Storage (Electrochemical Society, Pennington, 1997)

    Google Scholar 

  6. V.G. Chigrinov, Liquid Crystal Devices: Physics and Applications (Artech House, London, 1999)

    Google Scholar 

  7. G.S. Veglier, Sens. Actuators B, Chem. 6, 239 (1992)

    Article  Google Scholar 

  8. A. Dieguez, A.R. Rodirgues, J.R. Morante, Sens. Actuators B, Chem. 31, 1 (1996)

    Article  Google Scholar 

  9. S. Ferrere, A. Zaban, B. Gregg, J. Phys. Chem. B 101, 4490 (1997)

    Article  Google Scholar 

  10. Y.S. He, J.C. Campbell, R.C. Murphy, J. Mater. Res. 8, 3131 (1993)

    Article  ADS  Google Scholar 

  11. Y.L. Wang, X.C. Jiang, Y.N. Xia, J. Am. Chem. Soc. 125, 16176 (2003)

    Article  Google Scholar 

  12. X.H. Kong, X.M. Sun, Y.D. Li, Chem. Lett. 32, 546 (2003)

    Article  Google Scholar 

  13. J.Q. Hu, Y. Bando, D. Golberg, Chem. Phys. Lett. 372, 758 (2003)

    Article  ADS  Google Scholar 

  14. S. Budak, G.X. Miao, M. Ozdemir, K.B. Chetry, A. Gupta, J. Cryst. Growth. 291, 405 (2006)

    Article  ADS  Google Scholar 

  15. P. Nguyen, H.T. Ng, J. Kong, A.M. Cassell, R. Quinn, J. Li, J. Han, M. McNeil, M. Meyyappan, Nano Lett. 3, 925 (2003)

    Article  ADS  Google Scholar 

  16. E. Comini, S. Bianchi, G. Faglia, M. Ferroni, A. Vomiero, G. Sberveglieri, Appl. Phys. A 89, 73 (2007)

    Article  ADS  Google Scholar 

  17. B. Wang, Y.H. Yang, C.X. Wang, G.W. Yang, Chem. Phys. Lett. 407, 347 (2005)

    Article  ADS  Google Scholar 

  18. B. Salhi, J. Electroceram. 16, 15 (2006)

    Article  Google Scholar 

  19. O. Kubachewski, C.B. Alcok, Metallurgical Thermochemistry (Pergamon, Elmsford, 1979)

    Google Scholar 

  20. J. Lee, T. Tanaka, J. Lee, H. Mori, CALPHAD 31, 105–111 (2007)

    Article  Google Scholar 

  21. J.H. Lee, D.N. Lee, J. Electron. Mater. 30, 9 (2001)

    Google Scholar 

  22. B. Krishnamachari, J. McLean, B. Cooper, J. Sethna, Phys. Rev. B 54(12), 8899 (1996)

    Article  ADS  Google Scholar 

  23. Y. Gogotsi, Nanotubes and Nanofibers (Taylor & Francis, Boca Raton, 2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. K. Sadrnezhaad.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Salehi, M., Janfeshan, B. & Sadrnezhaad, S.K. Growth of tin oxide nanotubes by aerial carbothermal evaporation. Appl. Phys. A 97, 361–364 (2009). https://doi.org/10.1007/s00339-009-5216-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-009-5216-0

PACS

  • 81.16.-c
  • 81.07.De
  • 81.16.Be
  • 81.07.Bc
  • 81.16.Pr