Skip to main content
Log in

Inorganic WS2 nanotubes revealed atom by atom using ultra-high-resolution transmission electron microscopy

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The characterization of nanostructures to the atomic dimensions becomes more important, as devices based on a single particle are being produced. In particular, inorganic nanotubes were shown to host interesting properties making them excellent candidates for various devices. The WS2 nanotubes outperform the bulk in their mechanical properties offering numerous applications especially as part of high strength nanocomposites. In contrast, their electrical properties are less remarkable. The structure–function relationship can be investigated by aberration-corrected high-resolution transmission electron microscopy (HRTEM), which enables the insight into their atomic structure as well as performing spectroscopic measurements down to the atomic scale. In the present work, the deciphering of atomic structure and the chiral angle of the different shells in a multiwall WS2 nanotube is demonstrated. In certain cases, the helicity of the structure can also be deduced. Finally, first electron energy loss spectra (EELS) of a single tube are presented, acquired by a new acquisition technique that allows for high spatial resolution (denoted StripeSTEM). The measured band gap values correspond with the values found in literature for thin films, obtained by spectroscopic techniques, and are higher than the values resulting from STM measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Iijima, Nature 354, 56–58 (1991)

    Article  ADS  Google Scholar 

  2. R. Tenne, L. Margulis, M. Genut, G. Hodes, Nature 360, 444–446 (1992)

    Article  ADS  Google Scholar 

  3. I. Kaplan-Ashiri, S.R. Cohen, K. Gartsman, V. Ivanovskaya, T. Heine, G. Seifert, I. Wiesel, H.D. Wagner, R. Tenne, Proc. Nat. Acad. Sci. USA 103, 523–528 (2006)

    Article  ADS  Google Scholar 

  4. G. Seifert, T. Kohler, R. Tenne, J. Phys. Chem. B 106, 2497–2501 (2002)

    Article  Google Scholar 

  5. R. Rosentsveig, A. Margolin, Y. Feldman, R. Popovitz-Biro, R. Tenne, Appl. Phys. A 74, 367–369 (2002)

    Article  ADS  Google Scholar 

  6. A. Margolin, R. Rosentsveig, A. Albu-Yaron, R. Popovitz-Biro, R. Tenne, J. Mater. Chem. 14, 617–624 (2004)

    Article  Google Scholar 

  7. G. Seifert, H. Terrones, M. Terrones, G. Jungnickel, T. Frauenheim, Solid State Commun. 114, 245–248 (2000)

    Article  ADS  Google Scholar 

  8. G. Seifert, H. Terrones, M. Terrones, G. Jungnickel, T. Frauenheim, Phys. Rev. Lett. 85, 146–149 (2000)

    Article  ADS  Google Scholar 

  9. L. Scheffer, R. Rosentzveig, A. Margolin, R. Popovitz-Biro, G. Seifert, S.R. Cohen, R. Tenne, Phys. Chem. Chem. Phys. 4, 2095–2098 (2002)

    Article  Google Scholar 

  10. C. Ballif, M. Regula, P.E. Schmid, M. Remskar, R. Sanjinés, F. Lévy, Appl. Phys. A 62, 543–546 (1996)

    ADS  Google Scholar 

  11. Y. Feldman, E. Wasserman, D.J. Srolovitz, R. Tenne, Science 267, 222–225 (1995)

    Article  ADS  Google Scholar 

  12. M. Nath, C.N.R. Rao, J. Am. Chem. Soc. 123, 4841–4842 (2001)

    Article  Google Scholar 

  13. M. Nath, C.N.R. Rao, Angewandte Chemie-International Edition 41, 3451–3454 (2002)

    Article  Google Scholar 

  14. J. Goldberger, R. He, Y. Zhang, S. Lee, H. Yan, H.-J. Choi, P. Yang, Nature 422, 599–602 (2003)

    Article  ADS  Google Scholar 

  15. B. Cheng, E.T. Samulski, J. Mater. Chem. 11, 2901–2902 (2001)

    Article  Google Scholar 

  16. Y.B. Li, Y. Bando, D. Golberg, Adv. Mater. 15, 581–585 (2003)

    Article  Google Scholar 

  17. C.N.R. Rao, A. Govindaraj, F.L. Deepak, N.A. Gunari, M. Nath, Appl. Phys. Lett. 78, 1853–1855 (2001)

    Article  ADS  Google Scholar 

  18. T. Sehayek, M. Lahav, R. Popovitz-Biro, A. Vaskevich, I. Rubinstein, Chem. Mat. 17, 3743–3748 (2005)

    Article  Google Scholar 

  19. L.W. Yin, Y. Bando, D. Golberg, M.S. Li, Adv. Mater. 16, 1833 (2004)

    Article  Google Scholar 

  20. C.L. Jia, M. Lentzen, K. Urban, Science 299, 870–873 (2003)

    Article  ADS  Google Scholar 

  21. C.-L. Jia, S.-B. Mi, K. Urban, I. Vrejoiu, M. Alexe, D. Hesse, Nat. Mater. 7, 57–61 (2008)

    Article  ADS  Google Scholar 

  22. K.W. Urban, Science 321, 506–510 (2008)

    Article  ADS  Google Scholar 

  23. R. Tenne, in Nanomaterials Handbook ed. by Y. Gogotsi (CRC, 2006), pp. 317–337. ISBN: 9780849323089

  24. R. Tenne, Nature Nanotechnol. 1, 103–111 (2006)

    Article  ADS  Google Scholar 

  25. M. Haider, S. Uhlemann, E. Schwan, H. Rose, B. Kabius, K. Urban, Nature 392, 768–769 (1998)

    Article  ADS  Google Scholar 

  26. M. Lentzen, Microsc. Microanalysis 12, 191–205 (2006)

    Article  ADS  Google Scholar 

  27. W.M.J. Coene, A. Thust, M. Op de Beeck, D. Van Dyck, Ultramicroscopy 64, 109–135 (1996)

    Article  Google Scholar 

  28. A. Thust, W.M.J. Coene, M. Op de Beeck, D. Van Dyck, Ultramicroscopy 64, 211–230 (1996)

    Article  Google Scholar 

  29. P.A. Stadelmann, Ultramicroscopy 21, 131–145 (1987)

    Article  Google Scholar 

  30. L.C. Qin, Phys. Chem. Chem. Phys. 9, 31–48 (2007)

    Article  Google Scholar 

  31. J.M. Zuo, I. Vartanyants, M. Gao, R. Zhang, L.A. Nagahara, Science 300, 1419–1421 (2003)

    Article  ADS  Google Scholar 

  32. L. Margulis, P. Dluzewski, Y. Feldman, R. Tenne, J. Microsc. Lond. 181, 68–71 (1996)

    Google Scholar 

  33. Y. Rosenfeld Hacohen, R. Popovitz-Biro, Y. Prior, S. Gemming, G. Seifert, R. Tenne, Phys. Chem. Chem. Phys. 5, 1644–1651 (2003)

    Article  Google Scholar 

  34. M. Bar Sadan, L. Houben, A.N. Enyashin, G. Seifert, R. Tenne, Proc. Nat. Acad. Sci. USA 105, 15643–15648 (2008)

    Article  ADS  Google Scholar 

  35. A. Johansson, G. Sambandamurthy, D. Shahar, N. Jacobson, R. Tenne, Phys. Rev. Lett. 95, 116805 (2005)

    Article  ADS  Google Scholar 

  36. M. Heidelmann, L. Houben, J. Barthel, K. Urban, in Proceedings of the 14th European Microscopy Congress, vol. 1: Instrumentation and Methods, Aachen, Germany (Springer, Heidelberg, 2008), p. 383

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reshef Tenne.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bar Sadan, M., Heidelmann, M., Houben, L. et al. Inorganic WS2 nanotubes revealed atom by atom using ultra-high-resolution transmission electron microscopy. Appl. Phys. A 96, 343–348 (2009). https://doi.org/10.1007/s00339-009-5208-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-009-5208-0

PACS

Navigation