Skip to main content

Nanoscale laser processing and diagnostics

Abstract

The article summarizes research activities of the Laser Thermal Laboratory on pulsed nanosecond and femtosecond laser-based processing of materials and diagnostics at the nanoscale using optical-near-field processing. Both apertureless and apertured near-field probes can deliver highly confined irradiation at sufficiently high intensities to impart morphological and structural changes in materials at the nanometric level. Processing examples include nanoscale selective subtractive (ablation), additive (chemical vapor deposition), crystallization, and electric, magnetic activation. In the context of nanoscale diagnostics, optical-near-field-ablation-induced plasma emission was utilized for chemical species analysis by laser-induced breakdown spectroscopy. Furthermore, optical-near-field irradiation greatly improved sensitivity and reliability of electrical conductance atomic force microscopy enabling characterization of electron tunneling through the oxide shell on silicon nanowires. Efficient in-situ monitoring greatly benefits optical-near-field processing. Due to close proximity of the probe tip with respect to the sample under processing, frequent degradation of the probe end occurs leading to unstable processing conditions. Optical-fiber-based probes have been coupled to a dual-beam (scanning electron microscopy and focused ion beam) system in order to achieve in-situ monitoring and probe repair.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    D. Bäuerle, Laser Processing and Chemistry, 3rd edn. (Springer, Heidelberg, 2000)

    Google Scholar 

  2. 2.

    E. Betzig, J.K. Trautman, T.D. Harris, J.S. Weiner, R.L. Kostelak, Science 251, 1468 (1991)

    Article  ADS  Google Scholar 

  3. 3.

    C.P. Grigoropoulos, D.J. Hwang, A. Chimmalgi, MRS Bull. 32(1), 16–22 (2007)

    Google Scholar 

  4. 4.

    D.J. Hwang, H.J. Jeon, C.P. Grigoropoulos, J. Yoo, R.E. Russo, Appl. Phys. Lett. 91, 251118 (2007)

    Article  ADS  Google Scholar 

  5. 5.

    D.J. Hwang, H.J. Jeon, C.P. Grigoropoulos, J. Yoo, R.E. Russo, J. Appl. Phys. 104, 013110 (2008)

    Article  ADS  Google Scholar 

  6. 6.

    E. Stratakis, N. Marsa, E. Spanakis, D.J. Hwang, C.P. Grigoropoulos, C. Fotakis, P. Tzanetakis, Nano Lett. 8, 1949 (2008)

    Article  ADS  Google Scholar 

  7. 7.

    E. Spanakis, A. Chimmalgi, E. Stratakis, C.P. Grigoropoulos, C. Fotakis, P. Tzanetakis, Appl. Phys. Lett. 89, 013110 (2006)

    Article  ADS  Google Scholar 

  8. 8.

    D.J. Hwang, N. Misra, S.S. Mao, C.P. Grigoropoulos, A. Minor, J. Vac. Sci. Technol. A 26, 17250 (2008)

    Article  Google Scholar 

  9. 9.

    A. Chimmalgi, T.-Y. Choi, C.P. Grigoropoulos, K. Komvopoulos, Appl. Phys. Lett. 82, 1146 (2003)

    Article  ADS  Google Scholar 

  10. 10.

    A. Chimmalgi, T.-Y. Choi, C.P. Grigoropoulos, K. Komvopoulos, J. Appl. Phys. 97, 104319 (2005)

    Article  ADS  Google Scholar 

  11. 11.

    T.V. Pistor, Electromagnetic simulation and modeling with applications in lithography. Memorandum No. UCB/ERL M01/19 (2001)

  12. 12.

    M. Ohtsu, Near-Field Nano/Atom Optics and Technology (Springer, Tokyo, 1998)

    Google Scholar 

  13. 13.

    T.W. Ebbesen, H.J. Lezec, H.F. Ghaemi, T. Thio, P.A. Wolff, Nature 391, 667 (1998)

    Article  ADS  Google Scholar 

  14. 14.

    D.J. Hwang, A. Chimmalgi, C.P. Grigoropoulos, J. Appl. Phys. 99, 044905 (2006)

    Article  ADS  Google Scholar 

  15. 15.

    Y.F. Lu, Z.H. Mai, G. Qiu, W.K. Chim, Appl. Phys. Lett. 75, 2359 (1999)

    Article  ADS  Google Scholar 

  16. 16.

    J. Boneberg, H.J. Munzer, M. Tresp, M. Ochmann, P. Leiderer, Appl. Phys. A 67, 381 (1998)

    Article  ADS  Google Scholar 

  17. 17.

    J. Jersch, F. Demming, K. Dickmann, Appl. Phys. A 64, 29 (1997)

    Article  ADS  Google Scholar 

  18. 18.

    Y.F. Lu, B. Hu, Z.H. Mai, W.J. Wang, W.K. Chim, T.C. Chong, Jpn. J. Appl. Phys. 40, 4395 (2001)

    Article  ADS  Google Scholar 

  19. 19.

    R. Huber, M. Koch, J. Feldmann, Appl. Phys. Lett. 73, 2521 (1998)

    Article  ADS  Google Scholar 

  20. 20.

    J. Sun, J.P. Longtin, J. Appl. Phys. 89, 8219 (2001)

    Article  ADS  Google Scholar 

  21. 21.

    M.C. Wanke, O. Lehmann, K. Muller, W. Qingzhe, M. Stuke, Science 275, 1284 (1997)

    Article  Google Scholar 

  22. 22.

    H.H. Gilgen, T. Cacouris, P.S. Shaw, R.R. Krchnavek, R.M. Osgood, Appl. Phys. B 42, 55 (1987)

    Article  ADS  Google Scholar 

  23. 23.

    C.P. Grigoropoulos, A. Chimmalgi, D.J. Hwang, Nano-structuring using pulsed laser radiation, in Laser Ablation and Its Applications, ed. by C. Phippe. Springer Series in Optical Sciences (Springer, New York, 2007). Chap. 19

    Google Scholar 

  24. 24.

    A. Chimmalgi, D.J. Hwang, C.P. Grigoropoulos, Nano Lett. 5, 1924 (2005)

    Article  ADS  Google Scholar 

  25. 25.

    M. Lee, S. Moon, M. Hatano, K. Suzuki, C.P. Grigoropoulos, J. Appl. Phys. 88, 4994 (2000)

    Article  ADS  Google Scholar 

  26. 26.

    P.A. Stolk, A. Polman, W.C. Sinke, Phys. Rev. B 47, 5 (1993)

    Article  ADS  Google Scholar 

  27. 27.

    M. Lee, S. Moon, C.P. Grigoropoulos, J. Cryst. Growth 226, 8 (2001)

    Article  ADS  Google Scholar 

  28. 28.

    S.A. Wolf, D.D. Awschalom, R.A. Buhrman, J.M. Daughton, S. von Molnar, M.L. Roukes, A.Y. Chtchelkanova, D.M. Treger, Science 294, 1488 (2001)

    Article  ADS  Google Scholar 

  29. 29.

    D. Chiba, F. Matsukura, H. Ohno, Appl. Phys. Lett. 89, 162505 (2006)

    Article  ADS  Google Scholar 

  30. 30.

    Y. Ohno, D.K. Young, B. Beschoten, F. Matsukura, H. Ohno, D.D. Awschalom, Nature 402, 790 (1999)

    Article  ADS  Google Scholar 

  31. 31.

    R. Farshchi, R.V. Chopdekar, Y. Suzuki, P.D. Ashby, I.D. Sharp, J.W. Beeman, E.E. Haller, O.D. Dubon, Phys. Status Solidi C 4, 1755 (2007)

    Article  ADS  Google Scholar 

  32. 32.

    M.A. Scarpulla, O.D. Dubon, K.M. Yu, O. Monteiro, M.R. Pillai, M.J. Aziz, M.C. Ridgway, Appl. Phys. Lett. 82, 1251 (2003)

    Article  ADS  Google Scholar 

  33. 33.

    A. Chimmalgi, D.J. Hwang, C.P. Grigoropoulos, J. Phys., Conf. Ser. 59, 285 (2007)

    Article  ADS  Google Scholar 

  34. 34.

    W.F. Meggers, C.H. Corliss B, F. Scribner, Table of Spectral-Line Transitions, Part I (National Bureau of Standards, Washington, 1961)

    Google Scholar 

  35. 35.

    M. Porti, M. Nafria, X. Aymerich, A. Olbrich, B.J. Ebersberger, J. Appl. Phys. 91, 2071 (2002)

    Article  ADS  Google Scholar 

  36. 36.

    L. Zhang, Y. Mitani, Appl. Phys. Lett. 88, 032906 (2006)

    Article  ADS  Google Scholar 

  37. 37.

    R. Wiliams, Phys. Rev. 140, A569 (1965)

    Article  ADS  Google Scholar 

  38. 38.

    W. Wang, G. Lüpke, M. Di Ventra, S.T. Pantelides, J.M. Gilligan, N.H. Tolk, Phys. Rev. Lett. 81, 4224 (1998)

    Article  ADS  Google Scholar 

  39. 39.

    C.W. Barnard, J.W.Y. Lit, Appl. Opt. 30, 1958 (1991)

    Article  ADS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Costas P. Grigoropoulos.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hwang, D., Ryu, SG., Misra, N. et al. Nanoscale laser processing and diagnostics. Appl. Phys. A 96, 289–306 (2009). https://doi.org/10.1007/s00339-009-5207-1

Download citation

PACS

  • 42.62.-b
  • 07.79.Fc
  • 68.37.Uv
  • 81.07.-b
  • 81.16.Nd