Skip to main content
Log in

Breakdown of the Planck blackbody radiation law at nanoscale gaps

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The Planck theory of blackbody radiation imposes a limit on the maximum radiative transfer between two objects at given temperatures. When the two objects are close enough, near-field effects due to tunneling of evanescent waves lead to enhancement of radiative transfer above the Planck limit. When the objects can support electromagnetic surface polaritons, the enhancement can be a few orders-of-magnitude larger than the blackbody limit. In this paper, we summarize our recent measurements of radiative transfer between two parallel silica surfaces and between a silica microsphere and a flat silica surface that show unambiguous evidence of enhancement of radiative transfer due to near-field effects above the Planck limit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. O. Lummer, E. Pringsheim, Verh. Dtsch. Phys. Ges. 1, 23 (1899)

    Google Scholar 

  2. O. Lummer, E. Pringsheim, Verh. Dtsch. Phys. Ges. 1, 215 (1899)

    Google Scholar 

  3. M. Planck, The Theory of Heat Radiation (Dover, New York, 1991)

    Google Scholar 

  4. D. Polder, M. Van Hove, Phys. Rev. B 4, 3303 (1971)

    Article  ADS  Google Scholar 

  5. S.M. Rytov, Theory of Electric Fluctuations and Thermal Radiation (Air Force Cambridge Research Center, Bedford, 1959)

    Google Scholar 

  6. S.M. Rytov, Y.A. Kravtsov, V.I. Tatarski, Principles of Statistical Radiophysics (Springer, Berlin, 1987)

    MATH  Google Scholar 

  7. G.A. Domoto, R.F. Boehm, C.L. Tien, Trans. ASME J. Heat Transf. 92, 412 (1970)

    Google Scholar 

  8. C.M. Hargreaves, Philips Res. Rep. Suppl. 5, 1 (1973)

    Google Scholar 

  9. J.-B. Xu, K. Lauger, R. Moller, K. Dransfeld, I.H. Wilson, J. Appl. Phys. 76, 7209 (1994)

    Article  ADS  Google Scholar 

  10. A. Kittel, W. Muller-Hirsch, J. Parisi, S. Biehs, D. Reddig, M. Holthaus, Phys. Rev. Lett. 95, 224301 (2005)

    Article  ADS  Google Scholar 

  11. C. Henkel, K. Joulain, R. Carminati, J.-J. Greffet, Opt. Commun. 186, 57 (2000)

    Article  ADS  Google Scholar 

  12. J.-J. Greffet, R. Carminati, K. Joulain, J.P. Mulet, S. Mainguy, Y. Chen, Nature 416, 61 (2002)

    Article  ADS  Google Scholar 

  13. J.-P. Mulet, K. Joulain, R. Carminati, J.-J. Greffet, Microscale Thermophys. Eng. 6, 209 (2002)

    Article  Google Scholar 

  14. J.-P. Mulet, K. Joulain, R. Carminati, J.-J. Greffet, Appl. Phys. Lett. 78, 2931 (2001)

    Article  ADS  Google Scholar 

  15. A. Narayanaswamy, G. Chen, Appl. Phys. Lett. 82, 3544 (2003)

    Article  ADS  Google Scholar 

  16. M. Laroche, R. Carminati, J.-J. Greffet, J. Appl. Phys. 100, 063704 (2006)

    Article  ADS  Google Scholar 

  17. C.J. Fu, Z.M. Zhang, Int. J. Heat Mass Trans. 49, 1703 (2006)

    Article  Google Scholar 

  18. W. Müller-Hirsch, A. Kraft, M.T. Hirsch, J. Parisi, A. Kittel, J. Vac. Sci. Technol., A 17, 1205 (1999)

    Article  ADS  Google Scholar 

  19. P.O. Chapuis, M. Laroche, S. Volz, J.J. Greffet, Phys. Rev. B, Condens. Matter Mater. Phys. 77, 125402 (2008)

    ADS  Google Scholar 

  20. L. Hu, A. Narayanaswamy, X.Y. Chen, G. Chen, Appl. Phys. Lett. 92 (2008)

  21. A. Narayanaswamy, S. Shen, G. Chen, Phys. Rev. B 78, 115303 (2008)

    Article  ADS  Google Scholar 

  22. A. Narayanaswamy, G. Chen, in Annual Review of Heat Transfer, vol. 14, ed. by V. Prasad, Y. Jaluria, G. Chen (Begell House, Reading, 2005), p. 169

    Google Scholar 

  23. J. Weber, Phys. Rev. 101, 1620 (1956)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  24. H.B. Callen, T.A. Welton, Phys. Rev. 83, 34 (1951)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  25. L.D. Landau, E.M. Lifshitz, Statistical Physics (Addison-Wesley, Reading, 1969)

    Google Scholar 

  26. E. Palik, Handbook of Optical Constants of Solids (Academic Press, New York, 1985)

    Google Scholar 

  27. A. Narayanaswamy, 2007

  28. J.R. Barnes, R.J. Stephenson, C.N. Woodburn, S.J. O’Shea, M.E. Welland, T. Rayment, J.K. Gimzewski, C. Gerber, Rev. Sci. Instrum. 65, 3793 (1994)

    Article  ADS  Google Scholar 

  29. J.K. Gimzewski, C. Gerber, E. Meyer, R.R. Schlittler, Chem. Phys. Lett. 217, 589 (1994)

    Article  ADS  Google Scholar 

  30. J. Varesi, J. Lai, T. Perazzo, Z. Shi, A. Majumdar, Appl. Phys. Lett. 71, 306 (1997)

    Article  ADS  Google Scholar 

  31. P.G. Datskos, N.V. Lavrik, S. Rajic, Rev. Sci. Instrum. 75, 1134 (2004)

    Article  ADS  Google Scholar 

  32. U. Mohideen, A. Roy, Phys. Rev. Lett. 81, 4549 (1998)

    Article  ADS  Google Scholar 

  33. A. Narayanaswamy, G. Chen, Phys. Rev. B 77, 075125 (2008)

    Article  ADS  Google Scholar 

  34. S. Shen, A. Narayanaswamy, S. Goh, G. Chen, Appl. Phys. Lett. 92, 063509 (2008)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arvind Narayanaswamy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Narayanaswamy, A., Shen, S., Hu, L. et al. Breakdown of the Planck blackbody radiation law at nanoscale gaps. Appl. Phys. A 96, 357–362 (2009). https://doi.org/10.1007/s00339-009-5203-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-009-5203-5

PACS

Navigation