Applied Physics A

, Volume 96, Issue 2, pp 349–352 | Cite as

Hydrogen storage characteristics of nanograined free-standing magnesium–nickel films

  • Matthew Rogers
  • Steven Barcelo
  • Xiaobo Chen
  • Thomas J. Richardson
  • Vincent Berube
  • Gang Chen
  • Mildred S. Dresselhaus
  • Costas P. Grigoropoulos
  • Samuel S. Mao
Open Access
Article

Abstract

Free-standing magnesium–nickel (Mg–Ni) films with extensive nanoscale grain structures were fabricated using a combination of pulsed laser deposition and film delaminating processes. Hydrogen sorption and desorption properties of the films, free from the influence of substrates, were investigated. Oxidation of the material was reduced through the use of a sandwiched free-standing film structure in which the top and bottom layers consist of nanometer-thick Pd layers, which also acted as a catalyst to promote hydrogen uptake and release. Hydrogen storage characteristics were studied at three temperatures, 296, 232, and 180°C, where multiple sorption/desorption cycles were measured gravimetrically. An improvement in hydrogen storage capacity over the bulk Mg–Ni target material was found for the free-standing films. As shown from a Van’t Hoff plot, the thermodynamic stability of the nanograined films is similar to that of Mg2Ni. These results suggest that free-standing films, of which better control of material compositions and microstructures can be realized than is possible for conventional ball-milled powders, represent a useful materials platform for solid-state hydrogen storage research.

PACS

68.43.Mn 68.43.Nr 68.55.-a 

References

  1. 1.
    A. Zuttel, Naturwissenschaften 91, 157 (2004) CrossRefADSGoogle Scholar
  2. 2.
    L. Schlapbach, A. Zuttel, Nature 414, 353 (2001) CrossRefADSGoogle Scholar
  3. 3.
    G. Liang, J. Huot, S. Boily, A. Van Neste, R. Schulz, J. Alloys Compd. 292, 247 (1999) CrossRefGoogle Scholar
  4. 4.
    L. Ma, P. Wang, H. Cheng, J. Alloys Compd. 432, L1 (2007) CrossRefGoogle Scholar
  5. 5.
    X. Yao, C. Wu, G. Lu, H. Cheng, S. Smith, J. Zou, Y. He, J. Phys. Chem. B 110, 11697 (2006) CrossRefGoogle Scholar
  6. 6.
    V. Berube, G. Radtke, M.S. Dresselhaus, G. Chen, Int. J. Energy Res. 31, 637 (2007) CrossRefGoogle Scholar
  7. 7.
    A. Yermakov, N. Mushnikov, M. Uimin, V. Gaviko, A. Tankeev, A. Skripov, A. Soloninin, A. Buzlukov, J. Alloys Compd. 425, 367 (2006) CrossRefGoogle Scholar
  8. 8.
    R. Varin, T. Czujko, E. Wasmund, Z. Wronski, J. Alloys Compd. 432, 217 (2007) CrossRefGoogle Scholar
  9. 9.
    J. Huot, Nanocrystalline materials for hydrogen storage, in Nanoclusters and Nanocrystals, ed. by H. Nalwa (American Scientific Publishers, 2003), pp. 53–86 Google Scholar
  10. 10.
    N. Bazzanella, R. Checchetto, A. Miotello, C. Sada, P. Mazzoldi, P. Mengucci, Appl. Phys. Lett. 89, 014101 (2006) CrossRefADSGoogle Scholar
  11. 11.
    F. Zeppelin, H. Reule, M. Hirscher, J. Alloys Compd. 330–332, 723 (2002) CrossRefGoogle Scholar
  12. 12.
    L. Berlouis, P. Honnor, P. Hall, S. Morris, S. Dodd, J. Mater. Sci. 41, 6403 (2006) CrossRefADSGoogle Scholar
  13. 13.
    A. Bassetti, E. Bonetti, L. Pasquinin, A. Montone, J. Grbovic, M. Antisari, Eur. Phys. J. B 43, 19 (2005) CrossRefADSGoogle Scholar
  14. 14.
    S. Klyamkin, B. Tarasov, E. Straz, R. Lukashev, I. Gabis, E. Evard, P. Voyt, Int. Sci. J. Alt. Energy Ecol. 21, 27 (2005) Google Scholar
  15. 15.
    J. Ryden, B. Hjorvarsson, T. Ericsson, E. Karlsson, A. Krozer, B. Kasemo, J. Less-Common Met. 152, 295 (1989) CrossRefGoogle Scholar
  16. 16.
    K. Yoshimura, Y. Yamada, M. Okada, Surf. Sci. 566–588, 751 (2004) CrossRefGoogle Scholar
  17. 17.
    T. Richardson, J. Slack, R. Armitage, R. Kostecki, B. Farangis, M. Rubin, Appl. Phys. Lett. 78, 3047 (2001) CrossRefADSGoogle Scholar
  18. 18.
    T. Richardson, J. Slack, B. Farangis, M. Rubin, Appl. Phys. Lett. 80, 1349 (2002) CrossRefADSGoogle Scholar
  19. 19.
    R.J. Westerwaal, A. Borgschulte, W. Lohstroh, B. Dam, B. Kooi, G. Ten Brink, M.J.P. Hopstaken, P.H.L. Notten, J. Alloys Compd. 416, 2 (2006) CrossRefGoogle Scholar
  20. 20.
    N. Bazzanella, R. Checchetto, A. Miotello, Appl. Phys. Lett. 85, 5212 (2004) CrossRefADSGoogle Scholar
  21. 21.
    N. Bazzanella, R. Checchetto, A. Miotello, C. Sada, P. Mazzoldi, P. Mengucci, Appl. Phys. Lett. 89, 014101 (2006) CrossRefADSGoogle Scholar
  22. 22.
    A. Leon, E. Knystautas, J. Huot, R. Schulz, J. Alloys Compd. 345, 158 (2002) CrossRefGoogle Scholar
  23. 23.
    C. Nishimura, M. Komaki, M. Amano, J. Alloys Compd. 293, 329 (1999) CrossRefGoogle Scholar
  24. 24.
    L. Zaluski, P. Tessier, D. Ryan, A. Zaluska, J. Strom-Olsen, M. Trudeau, R. Schulz, J. Mat. Res. 8, 3059 (1993) CrossRefADSGoogle Scholar
  25. 25.
    G. Libowitz, A. Maeland, J. Less-Common Met. 101, 131 (1984) CrossRefGoogle Scholar
  26. 26.
    J. Ryden, B. Hjorvarsson, T. Ericsson, E. Karlsson, A. Krozer, B. Kasemo, J. Less-Common Met. 152, 295 (1989) CrossRefGoogle Scholar
  27. 27.
    K. Higuchi, K. Yamamoto, H. Kajioka, K. Toiyama, M. Honda, S. Orimo, H. Fujii, J. Alloys Compd. 330, 526 (2002) CrossRefGoogle Scholar
  28. 28.
    J. Reilly, R. Wiswall, Inorg. Chem. 7, 2254 (1968) CrossRefGoogle Scholar
  29. 29.
    K. Gross, P. Spatz, A. Zuttel, L. Schlapbach, J. Alloys Compd. 240, 206 (1996) CrossRefGoogle Scholar
  30. 30.
    D. Sun, H. Enoki, F. Gingl, E. Akiba, J. Alloys Compd. 285, 279 (1999) CrossRefGoogle Scholar
  31. 31.
    H. Shao, H. Xu, Y. Wang, X. Li, Nanotechnology 15, 269 (2004) CrossRefADSGoogle Scholar

Copyright information

© The Author(s) 2009

Authors and Affiliations

  • Matthew Rogers
    • 1
    • 2
  • Steven Barcelo
    • 1
    • 2
  • Xiaobo Chen
    • 1
    • 2
  • Thomas J. Richardson
    • 1
  • Vincent Berube
    • 4
  • Gang Chen
    • 3
  • Mildred S. Dresselhaus
    • 4
  • Costas P. Grigoropoulos
    • 1
    • 2
  • Samuel S. Mao
    • 1
    • 2
  1. 1.Advanced Energy Technologies DepartmentLawrence Berkeley National LaboratoryBerkeleyUSA
  2. 2.Department of Mechanical EngineeringUniversity of California at BerkeleyBerkeleyUSA
  3. 3.Department of Mechanical EngineeringMassachusetts Institute of TechnologyCambridgeUSA
  4. 4.Department of PhysicsMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations