Advertisement

Applied Physics A

, Volume 96, Issue 2, pp 373–377 | Cite as

Large scale highly organized single-walled carbon nanotube networks for electrical devices

  • Laila Jaber-Ansari
  • Myung Gwan Hahm
  • Tae Hoon Kim
  • Sivasubramanian Somu
  • Ahmed BusnainaEmail author
  • Yung Joon Jung
Article

Abstract

Large-scale room-temperature liquid-phase directed assembly of highly organized single-walled carbon nanotubes (SWNT) over large areas is demonstrated. The presented process utilizes lithographically patterned template to guide the fluidic self-assembly of SWNTs on a silicon-dioxide substrate. The width of these highly organized SWNT structures are in the micron range while their heights are in orders of nanometers. Room temperature electrical IV characterization of these fabricated high coverage SWNT wires show linear ohmic behavior. The resistivity of these assembled SWNT network is in the order of 10−6 Ω m demonstrating their metallic characteristics during conductance. Scaling of the assembly processes on a wafer level with high yield is demonstrated. Our developed assembly process is compatible with complimentary metal oxide semiconductor (CMOS) processes and provides a simple and flexible way of building SWNT nanotube-based electronics in a large scale.

PACS

62.23.-c 81.07.De 81.16.-c 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M.S. Dresselhaus, Ph. Avouris, Carbon Nanotubes: Synthesis, Structure, Properties and Applications (Springer, New York, 2001) Google Scholar
  2. 2.
    P. Poncharal, C. Berger, Y. Yi, Z.L. Wang, W.A. de Heer, J. Phys. Chem. B 106, 12104 (2002) CrossRefGoogle Scholar
  3. 3.
    H.-S.P. Wong, IBM J. Res. Dev. 46, 133 (2002) CrossRefGoogle Scholar
  4. 4.
    J. Appenzeller, R. Martel, V. Derycke, M. Radosavljevi, S. Wind, D. Neumayer, Ph. Avouris, Microelectron. Eng. 64, 391 (2002) CrossRefGoogle Scholar
  5. 5.
    S. Sapmaz, Ya.M. Blanter, L. Gurevich, H.S.J. van der Zant, Phys. Rev. B 67, 235414 (2003) CrossRefADSGoogle Scholar
  6. 6.
    H.W.Ch. Postma, I. Kozinsky, A. Husain, M.L. Roukes, Appl. Phys. Lett. 86, 223105 (2005) CrossRefADSGoogle Scholar
  7. 7.
    M. Dequesnes, S.V. Rotkin, N.R. Aluru, Nanotechnology 13, 120 (2002) CrossRefADSGoogle Scholar
  8. 8.
    C. Stampfer, A. Jungen, C. Hierold, IEEE Sens. 6, 613 (2006) CrossRefGoogle Scholar
  9. 9.
    J. Kong, M.G. Chapline, H. Dai, Adv. Mater. 13, 1384 (2001) CrossRefGoogle Scholar
  10. 10.
    J. Kong, N.R. Franklin, C. Zhou, M.G. Chapline, S. Peng, K. Cho, H. Dai, Science 287, 622 (2000) CrossRefADSGoogle Scholar
  11. 11.
    S. Selvarasah, C.L. Chen, S.-H. Chao, P. Makaram, A. Busnaina, M.R. Dokmeci, in Proc. 14th Int. Conf. Sol.-State Sens. (2007), p. 1023 Google Scholar
  12. 12.
    R. S Morrisa, B.G.D.T. Gennettb, R. Raffaelleb, M.J. Hebenc, J. Power Sources 138, 277 (2004) CrossRefGoogle Scholar
  13. 13.
    S. Bhattacharyya, E. Kymakis, G.A.J. Amaratunga, Chem. Mater. 16, 4819 (2004) CrossRefGoogle Scholar
  14. 14.
    A.A. Mamedovi, N.A. Kotov, M. Prato, D.M. Guldi, J.P. Wicksted, A. Hirsch, Nat. Mater. 1, 190 (2002) CrossRefADSGoogle Scholar
  15. 15.
    G.M. Odegard, T.S. Gatesb, K.E. Wisea, C. Parka, E.J. Siochic, Compos. Sci. Technol. 63, 1671 (2003) CrossRefGoogle Scholar
  16. 16.
    D.N. Futaba, K. Hata, T. Yamada, T. Hiraoka, Y. Hayamizu, Y. Kakudate, O. Tanaike, H. Hatori, M. Yumura, S. Iijima, Nat. Mater. 5, 987 (2006) CrossRefADSGoogle Scholar
  17. 17.
    Y. Saitoa, Y. Tania, N. Miyagawaa, K. Mitsushimaa, A. Kasuyab, Y. Nishinab, Chem. Phys. Lett. 294, 593 (1998) CrossRefADSGoogle Scholar
  18. 18.
    A.M. Cassell, J.A. Raymakers, J. Kong, H. Dai, J. Phys. Chem. B 103, 6484 (1999) CrossRefGoogle Scholar
  19. 19.
    W.K. Masera, E. Muñoza, A.M. Benitoa, M.T. Martíneza, G.F. de la Fuenteb, Y. Maniettec, E. Anglaretd, J.-L. Sauvajold, Chem. Phys. Lett. 292, 14 (1998) Google Scholar
  20. 20.
    W.L. Wang, X.D. Bai, Z. Xu, S. Liu, E.G. Wang, Chem. Phys. Lett. 419, 81 (2006) CrossRefADSGoogle Scholar
  21. 21.
    M.C. LeMieux, M. Roberts, S. Barman, Y.W. Jin, J.M. Kim, Z. Bao, Science 321, 101 (2008) CrossRefADSGoogle Scholar
  22. 22.
    P. Makaram, S. Somu, X. Xiong, A. Busnaina, Y.J. Jung, N. McGruer, Appl. Phys. Lett. 90, 243108 (2007) CrossRefADSGoogle Scholar
  23. 23.
    P. Makaram, S. Selvarasah, X. Xiong, C.-L. Chen, A. Busnaina, N. Khanduja, M.R. Dokmeci, Nanotechnology 18, 395204 (2007) CrossRefGoogle Scholar
  24. 24.
    X. Xiong, L. Jaberansari, M.G. Hahm, A. Busnaina, Y.J. Jung, Small 3, 2006 (2007) CrossRefGoogle Scholar
  25. 25.
    H.W. Zhu, C.L. Xu, D.H. Wu, B.Q. Wei, R. Vajtai, P.M. Ajayan, Science 296, 884 (2002) CrossRefADSGoogle Scholar
  26. 26.
    F. Kreupl , Microelectron. Eng. 64, 399 (2002) CrossRefGoogle Scholar
  27. 27.
    Y. Yang, J. Zhang, X. Nan, Z. Liu, J. Phys. Chem. B 106, 4139 (2002) CrossRefGoogle Scholar
  28. 28.
    L. Hu, D.S. Hecht, G. Grüner, Nano Lett. 4, 2513 (2004) CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Laila Jaber-Ansari
    • 1
  • Myung Gwan Hahm
    • 1
  • Tae Hoon Kim
    • 1
  • Sivasubramanian Somu
    • 1
  • Ahmed Busnaina
    • 1
    Email author
  • Yung Joon Jung
    • 1
  1. 1.NSF Nanoscale Science & Engineering Center for High-rate NanomanufacturingNortheastern UniversityBostonUSA

Personalised recommendations