Skip to main content
Log in

Structure, ferroelectric and piezoelectric properties of (Bi0.98−x La0.02Na1−x )0.5Ba x TiO3 lead-free ceramics

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Lead-free (Bi0.98−x La0.02Na1−x )0.5Ba x TiO3 ceramics have been prepared by an ordinary sintering technique and their structure, ferroelectric and piezoelectric properties have been studied. The results of X-ray diffraction show that La2+ and Ba2+ diffuse into the Bi0.5Na0.5TiO3 lattices to form a new solid solution with a pure perovskite structure, and a morphotropic phase boundary (MPB) exists at 0.04<x<0.10. Compared with pure Bi0.5Na0.5TiO3 ceramics, the (Bi0.98−x La0.02Na1−x )0.5Ba x TiO3 ceramics possess much smaller coercive field E c and larger remanent polarization P r. Because of the low E c (3.38 kV/mm), large P r (46.2 μC/cm2) and the formation of the MPB of rhombohedral and tetragonal phases, the piezoelectric properties of the ceramics are significantly enhanced at x=0.06: d 33=181 pC/N and k p=36.3%. The depolarization temperature T d reaches a minimum value near the MPB. The ceramics exhibit relaxor characteristic, which is probably a result from the cation disordering in the 12-fold coordination sites. The temperature dependences of the ferroelectric and dielectric properties suggest that the ceramics may contain both polar and non-polar regions at the temperatures above T d.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Takennaka, K. Maruyama, K. Sakata, Jpn. J. Appl. Phys. 30, 2236 (1991)

    Article  ADS  Google Scholar 

  2. A. Herabut, A. Safari, J. Am. Soc. 80, 2954 (1997)

    Google Scholar 

  3. C. Zhou, X. Liu, J. Mater. Sci.: Mater Electron. 19, 29 (2008)

    Article  Google Scholar 

  4. D. Lin, K.W. Kwok, H.L.W. Chan, J. Phys. D: Appl. Phys. 40, 5344 (2007)

    Article  ADS  Google Scholar 

  5. D. Lin, D. Xiao, J. Zhu, P. Yu, Appl. Phys. Lett. 88, 062901 (2006)

    Article  ADS  Google Scholar 

  6. Y.Q. Yao, T.Y. Tseng, C.C. Chou, H.H.D. Chen, J. Appl. Phys. 102, 094102 (2007)

    Article  ADS  Google Scholar 

  7. K. Yoshii, Y. Hiruma, H. Nagata, T. Takenaka, Jpn. J. Appl. Phys. B 45(5), 4493 (2006)

    Article  ADS  Google Scholar 

  8. S. Zhao, G. Li, A. Ding, T. Wang, Q. Rui, J. Phys. D: Appl. Phys. 39, 2277 (2006)

    Article  ADS  Google Scholar 

  9. Y.M. Li, W. Chen, J. Zhou, Q. Xu, H.J. Sun, R.X. Xu, Mater. Sci. Eng. B 112, 5 (2004)

    Article  Google Scholar 

  10. X.X. Wang, X.G. Tang, K.W. Kwok, H.L.W. Chan, C.L. Choy, Appl. Phys. A 80, 1071 (2005)

    Article  ADS  Google Scholar 

  11. C.R. Zhou, X.Y. Lin, J. Electroceram. 19, 237 (2007)

    Article  Google Scholar 

  12. G. Fan, W. Lu, X. Wang, F. Liang, Appl. Phys. Lett. 91, 202908 (2007)

    Article  ADS  Google Scholar 

  13. R. Zuo, C. Ye, X. Fang, J. Lin, J. Eur. Ceram. Soc. 28, 871 (2008)

    Article  Google Scholar 

  14. Y.W. Li, W. Chen, Q. Xu, J. Zhou, X. Gu, S. Fang, Mater. Chem. Phys. 94, 328 (2005)

    Article  Google Scholar 

  15. J. Shieh, K.C. Wu, C.S. Chen, Acta Mater. 55(9), 3081 (2007)

    Article  Google Scholar 

  16. S. Zhang, T.R. Shrout, H. Nagata, Y. Hiruma, T. Takenaka, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54(5), 910 (2007)

    Article  Google Scholar 

  17. Q. Zheng, C. Xu, D. Lin, D. Gao, K.W. Kwok, J. Phys. D: App. Phys. 41, 125411 (2008)

    Article  ADS  Google Scholar 

  18. K. Ramam, M. Lopez, J. Phys. D: App. Phys. 39, 4466 (2006)

    Article  ADS  Google Scholar 

  19. K. Ramam, S.H. Luis, Phys. Status Solidi (a) 203, 2119 (2006)

    Article  Google Scholar 

  20. H.Y. Tian, D.Y. Wang, D.M. Lin, J.T. Zeng, K.W. Kwok, H.L.W. Chan, Solid State Commun. 142, 10 (2007)

    Article  ADS  Google Scholar 

  21. C. Karthik, N. Ravishankar, K.B.R. Varma, Appl. Phys. Lett. 89, 1760 (2006)

    Google Scholar 

  22. K. Uchino, S. Nomura, L.E. Cross, S.J. Tang, R.E. Newnham, J. Appl. Phys. 15, 1142 (1980)

    Article  ADS  Google Scholar 

  23. J. Suchanicz, J. Kusz, H. Böhm, H. Duda, J.P. Mercurio, J. Eur. Ceram. Soc. 22, 1559 (2003)

    Article  Google Scholar 

  24. J. Suchanicz, Ferroelectries 209, 561 (1998)

    Article  Google Scholar 

  25. Y. Hiruma, I. Yoshitaka, Y. Watanabe, H. Nagata, T. Takenaka, Appl. Phys. Lett. 92, 262904 (2008)

    Article  ADS  Google Scholar 

  26. G.F. Fan, W. Lu, X. Wang, F. Liang, J. Xiao, J. Phys. D: Appl. Phys. 41, 035403 (2008)

    Article  ADS  Google Scholar 

  27. F. Chu, N. Setter, J. Appl. Phys. 74, 5129 (1993)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dunmin Lin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, D., Kwok, K.W. Structure, ferroelectric and piezoelectric properties of (Bi0.98−x La0.02Na1−x )0.5Ba x TiO3 lead-free ceramics. Appl. Phys. A 97, 229–235 (2009). https://doi.org/10.1007/s00339-009-5189-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-009-5189-z

PACS

Navigation