Advertisement

Applied Physics A

, Volume 95, Issue 3, pp 661–665 | Cite as

Thermophysical properties of stable and metastable liquid copper and nickel by molecular dynamics simulation

  • H. P. Wang
  • B. WeiEmail author
Article

Abstract

Molecular dynamics simulation combined with an embedded atom method (EAM) potential was applied to the calculation of the specific heat and the diffusion coefficient for superheated and undercooled liquid copper and nickel as functions of temperature. The system contains 108,000 atoms. The calculated results show that the enthalpy increases linearly with the rise of temperature. There are no breaks at their melting temperatures of 1356 and 1726 K. It is found that the calculated specific heats of Cu and Ni are 32.75 and 36.11 J/mol/K respectively. The calculated mean square displacements increase linearly with calculated time. The diffusion coefficients are exponentially dependent on temperature. Moreover, the calculated results are in good agreement with the reported experimental results for the specific heat and diffusion coefficient.

PACS

61.25.Mv 65.20.+w 65.40.Ba 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K.F. Kelton, G.W. Lee, A.K. Gangopadhyay, R.W. Hyers, T.J. Rathz, J.R. Rogers, M.B. Robinson, D.S. Robinson, Phys. Rev. Lett. 90, 195504 (2003) CrossRefADSGoogle Scholar
  2. 2.
    H.P. Wang, B. Wei, Appl. Phys. Lett 93, 171904 (2008) CrossRefADSGoogle Scholar
  3. 3.
    K. Dragnevski, R.F. Cochrane, A.M. Mullis, Phys. Rev. Lett 89, 215502 (2005) CrossRefADSGoogle Scholar
  4. 4.
    H.P. Wang, W.J. Yao, B. Wei, Appl. Phys. Lett 89, 201905 (2006) CrossRefADSGoogle Scholar
  5. 5.
    J. Brillo, I. Egry, J. Mat. Sci. 40, 2213 (2005) CrossRefGoogle Scholar
  6. 6.
    E.A. Brener, D.E. Temkin, Phys. Rev. Lett. 94, 184501 (2002) CrossRefADSGoogle Scholar
  7. 7.
    H.P. Wang, C.D. Cao, B. Wei, Appl. Phys. Lett. 84, 4062 (2004) CrossRefADSGoogle Scholar
  8. 8.
    S. Mishra, S. Chakraborty, T. Debroy, J. Appl. Phys. 97, 094912 (2005) CrossRefADSGoogle Scholar
  9. 9.
    Y.S. Sung, H. Takeya, K. Hirata, K. Togano, Appl. Phys. Lett. 82, 3638 (2003) CrossRefADSGoogle Scholar
  10. 10.
    N. Wang, X.J. Han, B. Wei, Appl. Phys. Lett. 80, 28 (2002) CrossRefADSGoogle Scholar
  11. 11.
    M.S. Daw, M.I. Baskes, Phys. Rev. Lett. 50, 1285 (1983) CrossRefADSGoogle Scholar
  12. 12.
    M.S. Daw, M.I. Baskes, Phys. Rev. B 29, 6443 (1984) CrossRefADSGoogle Scholar
  13. 13.
    R.A. Jackson, Phys. Rev. B 37, 3924 (1988) CrossRefADSGoogle Scholar
  14. 14.
    R.A. Jackson, Phys. Rev. B 39, 12554 (1989) CrossRefADSGoogle Scholar
  15. 15.
    K. Moriguchi, M. Igarashi, Phys. Rev. B 74, 024111 (2006) CrossRefADSGoogle Scholar
  16. 16.
    L. Koci, A.B. Belonoshko, R. Ahuja, Phys. Rev. B 73, 224113 (2006) CrossRefADSGoogle Scholar
  17. 17.
    T. Okazawa, F. Takeuchi, Y. Kido, Phys. Rev. B 72, 075408 (2005) CrossRefADSGoogle Scholar
  18. 18.
    Y.N. Zhang, L. Wang, W.M. Wang, J.K. Zhou, Phys. Lett. A 355, 142 (2006) CrossRefADSMathSciNetGoogle Scholar
  19. 19.
    M. Chen, C. Yang, Z.Y. Guo, Int. J. Thermophys. 22, 1295 (2001) CrossRefGoogle Scholar
  20. 20.
    X.J. Han, M. Chen, Z.Y. Guo, J. Phys.: Condens. Matter 16, 2565 (2004) CrossRefADSGoogle Scholar
  21. 21.
    T. Schenk, D. Holland-Moritz, V. Simonet, R. Bellissent, D.M. Herlach, Phys. Rev. Lett. 89, 075507 (2002) CrossRefADSGoogle Scholar
  22. 22.
    T. IIida, R.I.L. Guthrie, The Physical Properties of Liquid Metals (Clarendon, Oxford, 1993), pp. 91, 201, 213 Google Scholar
  23. 23.
    K. Schaefers, M. Rosner-Kuhn, M.G. Frohberg, Mater. Sci. Eng. A 197, 83 (1995) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Department of Applied PhysicsNorthwestern Polytechnical UniversityXi’anPeople’s Republic of China

Personalised recommendations