Applied Physics A

, Volume 96, Issue 4, pp 1023–1026 | Cite as

Measurement of temperature and temperature gradient in millimeter samples by chlorine NQR

  • Janko Lužnik
  • Janez Pirnat
  • Zvonko TronteljEmail author


A mini-thermometer based on the 35Cl nuclear quadrupole resonance (NQR) frequency temperature dependence in the chlorates KClO3 and NaClO3 was built and successfully tested by measuring temperature and temperature gradient at 77 K and higher in about 100 mm3 active volume of a mini Joule–Thomson refrigerator. In the design of the tank-circuit coil, an array of small coils connected in series enabled us (a) to achieve a suitable ratio of inductance to capacity in the NQR spectrometer input tank circuit, (b) to use a single crystal of KClO3 or NaClO3 (of 1–2 mm3 size) in one coil as a mini-thermometer with a resolution of 0.03 K and (c) to construct a system for measuring temperature gradients when the spatial coordinates of each chlorate single crystal within an individual coil are known.


07.20.Dt 76.60.Gv 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D.B. Utton, Metrologia 3, 98 (1967) CrossRefADSGoogle Scholar
  2. 2.
    A. Ohte, IEEE Trans. Instrum. Meas. IM-25(4), 357 (1976) Google Scholar
  3. 3.
    J. Vanier, Can. J. Phys. 38, 1397 (1960) ADSGoogle Scholar
  4. 4.
    J. Vanier, Nuclear quadrupole resonance thermometer. U.K. Patent 1,069,501, 1967; U.S. Patent 3,373,348, 1968; C.A. Patent 4,479,470, 1968 Google Scholar
  5. 5.
    A. Ohte, H. Iwaoka, M. Araragi, K. Akiyama, Resonance thermometer. U.S. Patent 4,063,150, 1977; J.P. Patent 54,079,087, 1979; J.P. Patent 54,079,088, 1979; J.P. Patent 54,141,183, 1979 Google Scholar
  6. 6.
    B. Oljenik, V. Mateev, V. Sumerin, V. Ereminskij, A. Kuptsov, Nuclear quadrupole resonance thermometer. S.U. Patent 834,411, 1981 Google Scholar
  7. 7.
    T. Rudakov, V. Anferov, V. Grechishkin, Nuclear quadrupole resonance thermometer. S.U. Patent 1,265,495, 1986 Google Scholar
  8. 8.
    D.B. Utton, in Proc. 2nd Int. Symp. NQR Spectroscopy (Vallerini, Pisa, 1975), p. 341 Google Scholar
  9. 9.
    R.C. Zamar, C.E. Gonzales, D.J. Pusiol, Phys. Rev. B 58(5), 2476 (1998) CrossRefADSGoogle Scholar
  10. 10.
    J. Lužnik, I. Muševič, J. Pirnat, Z. Trontelj, J. Mol. Struct. 58, 543 (1980) CrossRefADSGoogle Scholar
  11. 11.
    T.P. Das, E.L. Hahn, Nuclear Quadrupole Resonance Spectroscopy (Academic, New York, 1958) Google Scholar
  12. 12.
    H. Bayer, Z. Phys. 130, 227 (1951) CrossRefADSGoogle Scholar
  13. 13.
    T. Kushida, G.B. Benedek, N. Bloembergen, Phys. Rev. 104,, 1364 (1956) CrossRefADSGoogle Scholar
  14. 14.
    J. Lužnik, J. Pirnat, Z. Trontelj, Slovenian Patent Application P-200,700,193, 2007 Google Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Institute of Mathematics, Physics and MechanicsLjubljanaSlovenia

Personalised recommendations