Skip to main content
Log in

Quantitative Lorentz transmission electron microscopy of structured thin permalloy films

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The defocusing of images of ferromagnetic particles in the transmission electron microscope gives rise to magnetic contrast (Lorentz microscopy). We have developed a theory which allows from this contrast to determine quantitatively the distribution of the magnetic fields of the specimen. The measurements were performed on permalloy particles of disc (diameter 50 nm), and rectangular (25×50 nm2 and 50×50 nm2) shapes, thickness of 21 nm. These particles had a vortex and Landau–Lifshitz structure, respectively. The determined value of the magnetic induction in the material amounted to 1.1±0.1 T. The stray fields in angular sectors of the rectangular particles reached 0.35±0.05 T. The width of the 90° Néel wall between domains turned out to be equal to 4.5±0.5 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.K. Petford-Long, J.N. Chapman, Lorentz Microscopy, in Magnetic Microscopy of Nanostructures, ed. by H. Hopster, H.P. Oepen (Springer, Berlin, 2005), pp. 67–86

    Chapter  Google Scholar 

  2. T. Arii, S. Yatsuya, N. Wada, K. Mihama, Jpn. J. Appl. Phys. 17, 259 (1978)

    Article  ADS  Google Scholar 

  3. J.N. Chapman, J. Phys. D 17, 623 (1984)

    Article  ADS  Google Scholar 

  4. R. Ploessl, J.N. Chapman, A.M. Thompson, J. Zweck, H. Hoffmann, J. Appl. Phys. 73, 2447 (1993)

    Article  ADS  Google Scholar 

  5. J. Raabe, R. Pulwey, R. Sattler, T. Schweinböck, J. Zweck, D. Weiss, J. Appl. Phys. 88, 4437 (2000)

    Article  ADS  Google Scholar 

  6. T. Haug, A. Vogl, J. Zweck, C.H. Back, Appl. Phys. Lett. 88, 082506 (2006)

    Article  ADS  Google Scholar 

  7. J.W.M. Jacobs, J.F.C.M. Verhoeven, J. Microsc. 143, 103 (1986)

    Google Scholar 

  8. J.N. Chapman, Mater. Sci. Eng. B 3, 355 (1989)

    Article  Google Scholar 

  9. L. Reimer, Transmission Electron Microscopy (Springer, New York, 1997)

    Google Scholar 

  10. http://de.wikipedia.org/wiki/MU-Metall

  11. F.B. Humphrey, M. Redjdal, Phys. Stat. Sol. (a) 201, 1771 (2004)

    Article  ADS  Google Scholar 

  12. T. Trunk, M. Redjdal, A. Kakay, M.F. Ruane, F.B. Humphrey, J. Appl. Phys. 89, 7606 (2001)

    Article  ADS  Google Scholar 

  13. F.B. Humphrey, M. Redjdal, J. Magn. Magn. Mater. 133, 11 (1994)

    Article  ADS  Google Scholar 

  14. A. Krasyuk, S.A. Nepijko, A. Oelsner, C.M. Schneider, H.J. Elmers, G. Schönhense, Appl. Phys. A 88, 793 (2007)

    Article  ADS  Google Scholar 

  15. C.M. Schneider, A. Kuksov, A. Krasyuk, A. Oelsner, D. Neeb, S.A. Nepijko, G. Schönhense, I. Mönch, R. Kaltofen, J. Morais, C. de Nadai, N.B. Brookes, Appl. Phys. Lett. 85, 2562 (2004)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Nepijko.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nepijko, S.A., Schönhense, G. Quantitative Lorentz transmission electron microscopy of structured thin permalloy films. Appl. Phys. A 96, 671–677 (2009). https://doi.org/10.1007/s00339-009-5131-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-009-5131-4

PACS

Navigation