Skip to main content

Key role of molecular kinetic energy in early stages of pentacene island growth

Abstract

Organic molecular beam deposition is studied systematically at thermal and hyperthermal regimes aiming at investigating the role of molecular kinetic energy on the growth mechanism of pentacene submonolayers on SiOx/Si. We show that the kinetic energy of the impinging molecule (Ek) plays a crucial role in determining island structure and shape, distribution of island sizes, the crystalline quality of the first monolayer, and even the growth mode of subsequent layers. With increasing Ek, the island structure changes from fractal to nonfractal, the shape becomes more anisotropic and the island size more uniform, pointing to correlated island growth. Moreover, while 3D island growth is observed for thermal organic molecular beam deposition, supersonic molecular beam deposition gives rise to layer-by-layer growth, at least for the first two layers. When Ek≥5.0 eV, the first monolayer is composed of large single crystalline domains which can extend over up to 10 μm, inferred from comparing atomic force micrographs of height and net transverse shear force. In these growth conditions both the high surface diffusivity and energy redistribution play a major role. We propose a mechanism where the energy dissipation occurring during the molecule–surface collision leads to the reorientation of whole islands during island coalescence, resulting in the elimination of grain boundaries.

References

  1. S. Lee, B. Koo, J. Shin, E. Lee, H. Park, H. Kim, Appl. Phys. Lett. 88, 162109 (2006)

    ADS  Article  Google Scholar 

  2. C.D. Dimitrakopoulos, P.R.L. Malenfant, Adv. Mater. 14, 99 (2002)

    Article  Google Scholar 

  3. C. Reese, Z. Bao, Mater. Today 10, 20 (2007)

    Article  Google Scholar 

  4. A. Di Carlo, F. Piacenza, A. Bolognesi, B. Stadlober, H. Maresch, Appl. Phys. Lett. 86, 263501 (2005)

    ADS  Article  Google Scholar 

  5. R.A. Street, D. Knipp, A.R. Volkel, Appl. Phys. Lett. 80, 1658 (2002)

    ADS  Article  Google Scholar 

  6. B. Nickel, R. Barabash, R. Ruiz, N. Koch, A. Kahn, L.C. Feldman, R.F. Haglund, G. Scoles, Phys. Rev. B 70, 125401 (2004)

    ADS  Article  Google Scholar 

  7. A.C. Mayer, R. Ruiz, R.L. Headrick, A. Kazimirov, G.G. Malliaras, Org. Electron. 5, 257 (2004)

    Article  Google Scholar 

  8. A.C. Mayer, A. Kazimirov, G.G. Malliaras, Phys. Rev. Lett. 97, 105503 (2006)

    ADS  Article  Google Scholar 

  9. S. Schiefer, M. Huth, A. Dobrinevski, B. Nickel, J. Am. Chem. Soc. 129, 10316 (2007)

    Article  Google Scholar 

  10. R. Ruiz, A. Papadimitratos, A.C. Mayer, G.G. Malliaras, Adv. Mater. 17, 1795 (2005)

    Article  Google Scholar 

  11. L. Casalis, M.F. Danisman, B. Nickel, G. Bracco, T. Toccoli, S. Iannotta, G. Scoles, Phys. Rev. Lett. 90, 206101 (2003)

    ADS  Article  Google Scholar 

  12. T. Toccoli, A. Palladoro, N. Coppedè, S. Iannotta, F. De Angelis, L. Mariucci, G. Fortunato, Appl. Phys. Lett. 88, 132106 (2006)

    ADS  Article  Google Scholar 

  13. S. Pratontep, F. Nuesch, L. Zuppiroli, M. Brinkmann, Phys. Rev. B 72, 085211 (2005)

    ADS  Article  Google Scholar 

  14. M. Kitamura, Y. Arakawa, J. Phys. Condens. Matter 20, 124011 (2008)

    ADS  Article  Google Scholar 

  15. F.-J. Meyer zu Heringdorf, M.C. Reuter, R.M. Tromp, Nature 412, 517 (2002)

    ADS  Article  Google Scholar 

  16. B. Stadlober, U. Haas, H. Maresch, A. Haase, Phys. Rev. B 74, 165302 (2006)

    ADS  Article  Google Scholar 

  17. R. Ruiz, B. Nickel, N. Koch, L.C. Feldman, R.F. Haglund, A. Kahn, G. Scoles, Phys. Rev. B 67, 125406 (2003)

    ADS  Article  Google Scholar 

  18. Y. Wu, T. Toccoli, N. Koch, E. Iacob, A. Pallaoro, P. Rudolf, S. Iannotta, Phys. Rev. Lett. 98, 076601 (2007)

    ADS  Article  Google Scholar 

  19. A.W. Neumann, R.J. Good, in Surface and Colloid Science, vol. 11, ed. by R.J. Good, R.R. Stromberg (Plenum, New York, 1979)

    Google Scholar 

  20. O.D. Jurchescu, J. Baas, T.M. Palstra, Appl. Phys. Lett. 84, 3061 (2004)

    ADS  Article  Google Scholar 

  21. R. Ruiz, B. Nickel, N. Koch, L.C. Feldman, R.F. Haglund, A. Kahn, G. Scoles, Phys. Rev. B 67, 125406 (2003)

    ADS  Article  Google Scholar 

  22. S. Iannotta, T. Toccoli, J. Polym. Sci. B 41, 2501 (2003)

    Article  Google Scholar 

  23. P. Milani, S. Iannotta, Cluster Beam Synthesis of Nano-Structured Materials (Springer, Berlin, 1999)

    Book  Google Scholar 

  24. I. Horcas, R. Fernandez, J.M. Gomez-Rodriguez, J. Colchero, J. Gomez-Herrero, A.M. Baro, Rev. Sci. Instrum. 78, 013705 (2007)

    ADS  Article  Google Scholar 

  25. R.M. Overney, H. Takano, M. Fujihira, W. Paulus, H. Ringsdorf, Phys. Rev. Lett. 72, 3546 (1994)

    ADS  Article  Google Scholar 

  26. J.A. Last, M.D. Ward, Adv. Mater. 8, 730 (1996)

    Article  Google Scholar 

  27. K. Puntambekar, J. Dong, G. Haugstad, C.D. Frisble, Adv. Funct. Mater. 16, 879 (2006)

    Article  Google Scholar 

  28. S. Pratontep, M. Brinkmann, F. Nuesch, L. Zuppiroli, Phys. Rev. B 69, 165201 (2004)

    ADS  Article  Google Scholar 

  29. M. Brinkman, S. Pratontep, C. Contal, Surf. Sci. 600, 4712 (2006)

    ADS  Article  Google Scholar 

  30. P.A. Burrough, Principles of Geographical Systems for Land Resources Assessment (Clarendon, Oxford, 1986)

    Book  Google Scholar 

  31. R.L. Schwoebel, J. Appl. Phys. 40, 614 (1969)

    ADS  Article  Google Scholar 

  32. J.E. Northrup, M.L. Tiago, S.G. Louie, Phys. Rev. B 66, 121404 (2002)

    ADS  Article  Google Scholar 

  33. J. Zhang, J.P. Rabe, N. Koch, Adv. Mater. 9999, 1–4 (2008)

    Google Scholar 

  34. M. Himmelhaus, M. Buck, M. Grunze, Mercury induced reorientation of alkanethiolates adsorbed on gold. Appl. Phys. B 68, 595 (1999)

    ADS  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petra Rudolf.

Rights and permissions

Open Access This is an open access article distributed under the terms of the Creative Commons Attribution Noncommercial License (https://creativecommons.org/licenses/by-nc/2.0), which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Cite this article

Wu, Y., Toccoli, T., Zhang, J. et al. Key role of molecular kinetic energy in early stages of pentacene island growth. Appl. Phys. A 95, 21–27 (2009). https://doi.org/10.1007/s00339-008-5039-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-008-5039-4

PACS

  • 72.80.Le
  • 81.15-z
  • 79.20Rf
  • 68.37.Ps
  • 68.55.J
  • 34.25.+a