Skip to main content
Log in

Effect of laser melting on plasma-sprayed aluminum oxide coatings reinforced with carbon nanotubes

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The effect of laser melting on the microstructure and mechanical properties of plasma-sprayed aluminum oxide composite coating reinforced with 4 wt% multi-walled carbon nanotubes (CNTs) is reported. Laser-melted layer consists of dense, coarse columnar microstructure which is significantly different from plasma-sprayed coating that consists of splats and porosity. CNTs retained their original cylindrical graphitic structure after undergoing laser irradiation. Three dimensional heat flow model has been developed to estimate temperature variation in the laser-melted composite layer. Laser-melted layers show an increase in the microhardness at the expanse of degradation of fracture toughness. Nanoindentation study indicates an increase in the elastic modulus and yield strength of the laser-melted layer which is attributed to dense microstructure with absence of weak-bonding splats and porosity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.J. Brook, Concise Encyclopedia of Advanced Ceramic Materials (Pergamon, Elmsford, 1991)

    Google Scholar 

  2. R. Krishnan, S. Dash, C.B. Rao, R.V.S. Rao, A.K. Tyagi, B. Raj, Scr. Mater. 45, 693 (2001)

    Article  Google Scholar 

  3. W.Q. Li, L. Gao, Nanostruct. Mater. 11, 1073 (1999)

    Article  Google Scholar 

  4. H.Z. Wang, L. Gao, L.H. Gui, J.K. Guo, Nanostruct. Mater. 10, 947 (1998)

    Article  Google Scholar 

  5. W. Nakao, M. Ono, S.K. Lee, K. Takahashi, K. Ando, J. Eur. Ceram. Soc. 25, 3649 (2005)

    Article  Google Scholar 

  6. E.W. Wong, P.E. Sheehan, C.M. Liebev, Science 277, 1971 (1999)

    Article  Google Scholar 

  7. E.T. Thostenson, Z.F. Ren, T.W. Chou, Compos. Sci. Technol. 61, 1899 (2001)

    Article  Google Scholar 

  8. R.W. Siegel, S.K. Chang, B.J. Ash, J. Stone, P.M. Ajayan, R.W. Doremus, L.S. Schadler, Scr. Mater. 44, 2061 (2001)

    Article  Google Scholar 

  9. G.D. Zhang, J.D. Kuntz, J.L. Wan, A.K. Mukherjee, Nat. Mater. 2, 38 (2003)

    Article  ADS  Google Scholar 

  10. K. Balani, S.B. Rao, Y. Chen, T. Laha, A. Agarwal, J. Nanosci. Nanotechnol. 7, 3553 (2007)

    Article  Google Scholar 

  11. R. Krishnan, S. Dash, C. Babu Rao, R.V. Subba Rao, A.K. Tyagi, B. Raj, Scr. Mater. 45, 693 (2001)

    Article  Google Scholar 

  12. J. Ilavsky, C.C. Berndt, H. Herman, P. Chraska, J. Dubsky, J. Therm. Spray. Technol. 6, 439 (1997)

    Article  ADS  Google Scholar 

  13. C.X. Ding, R.A. Zatorski, H. Herman, Thin Solid Films. 118, 467 (1984)

    Article  Google Scholar 

  14. G.N. Heintze, S. Uematsu, Surf. Coat. Technol. 150, 213 (1992)

    Article  Google Scholar 

  15. C. Batista, A. Portinha, P.M. Ribeiro, V. Teixeira, M.F. Costa, C.R. Oliveria, Appl. Surf. Sci. 247, 313 (2005)

    Article  ADS  Google Scholar 

  16. S. Ahmaniemi, P. Vuoristo, T. Mantyla, Mater. Sci. Eng. A 366, 175 (2004)

    Article  Google Scholar 

  17. J. Lawrence, L. Li, Surf. Coat. Technol. 162, 94 (2003)

    Article  Google Scholar 

  18. G.M. Pharr, W.C. Oliver, F.R. Brotzen, J. Mater. Res. 7, 613 (1992)

    Article  ADS  Google Scholar 

  19. G.R. Anstis, P. Chantikul, B.R. Lawn, D.B. Marshall, J. Am. Ceram. Soc. 64, 533 (1981)

    Article  Google Scholar 

  20. H. Luo, D. Goberman, L. Shaw, M. Gell, Mater. Sci. Eng. A 346, 237 (2003)

    Article  Google Scholar 

  21. F. Tabcret, F. Osterstock, Philos. Mag. 83, 125 (2003)

    Article  ADS  Google Scholar 

  22. A.E. Giannakopoulos, S. Suresh, Scr. Mater. 40, 1191 (1999)

    Article  Google Scholar 

  23. T.W. Ebbesen, P.M. Ajayan, Nature 358, 220 (1992)

    Article  ADS  Google Scholar 

  24. S. Iijima, T. Ichihashi, Nature 364, 603 (1993)

    Article  ADS  Google Scholar 

  25. W.H. Gitzen, Alumina as a Ceramic Material (American Ceramic Society, Westerville, 1970)

    Google Scholar 

  26. Y.P. Lei, H. Murakawa, Y.W. Shi, X.Y. Li, Comput. Mater. Sci. 21, 276 (2001)

    Article  Google Scholar 

  27. C.Y. Cui, T.W. Chou, Phys. Rev. B 71, 075409 (2005)

    Article  ADS  Google Scholar 

  28. M.A. Osman, D. Srivastava, Nanotechnology 12, 21 (2001)

    Article  ADS  Google Scholar 

  29. S. Berber, Y.K. Kwon, D. Tománek, Phys. Rev. Lett. 84, 4613 (2000)

    Article  ADS  Google Scholar 

  30. E.T. Thostenson, T.W. Chou, J. Phys. D 36, 573 (2003)

    Article  ADS  Google Scholar 

  31. B. Bhushan, B.K. Gupta, Handbook of Tribology: Materials, Coatings and Surface Treatments (McGraw Hill, New York, 1991)

    Google Scholar 

  32. Y. Mori, J.W. Hopmans, A.P. Mortensen, G.J. Kluitenberg, Vadose Zone J. 2, 561 (2003)

    Article  Google Scholar 

  33. Z. Wang, A. Kulkarni, S. Deshpande, T. Nakamura, H. Herman, Acta Mater. 51, 5319 (2003)

    Article  Google Scholar 

  34. F.P. Incropera, D.P. Dewitt, Fundamentals of Heat and Mass Transfer (Wiley, New York, 2002)

    Google Scholar 

  35. V.K. Tolpygo, D.R. Clarke, Acta Mater. 46, 5153 (1998)

    Article  Google Scholar 

  36. C. Li, T.W. Chou, Phys. Rev. B 71, 235414 (2005)

    Article  ADS  Google Scholar 

  37. B.I. Yakobson, P. Avouris, Carbon Nanotube: Synthesis, Structure, Properties, and Applications (Springer, Berlin, 2001)

    Google Scholar 

  38. W.T. Langford, The Making, Shaping and Treating of Steel (The Association of Iron and Steel Engineers, Pennsylvania, 1985)

    Google Scholar 

  39. K. Balani, A. Agarwal, Nanotechnology 19, 165701 (2008)

    Article  ADS  Google Scholar 

  40. Y. Chen, K. Balani, A. Agarwal, Appl. Phys. Lett. 91, 031903 (2007)

    Article  ADS  Google Scholar 

  41. D.R. Larson, J.A. Coppola, D.P.H. Hasselman, R.C. Bradt, J. Am. Ceram. Soc. 57, 417 (1974)

    Article  Google Scholar 

  42. R.S. Lima, B.R. Marple, Mater. Sci. Eng. A 395, 269 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arvind Agarwal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, Y., Samant, A., Balani, K. et al. Effect of laser melting on plasma-sprayed aluminum oxide coatings reinforced with carbon nanotubes. Appl. Phys. A 94, 861–870 (2009). https://doi.org/10.1007/s00339-008-4990-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-008-4990-4

PACS

Navigation