Synthesis and optical properties of nanocrystalline ZnO powders prepared by a direct thermal decomposition route

Abstract

This paper reports the synthesis and optical properties of nanocrystalline ZnO powders with crystallite sizes of 32.5 (±1.4)–43.4 (±0.4) nm prepared by a direct thermal decomposition of zinc acetate at the temperatures of 400, 500, 600, and 700°C for 4 h. The structure of the prepared samples was studied by XRD and FTIR spectroscopy, confirming the formation of wurtzite structure. The morphology of the samples revealed by SEM was affected by the thermal decomposition temperature, causing the formations of both nanoparticles and nanorods with different size and shape in the samples. The synthesized powders exhibited the UV absorption below 400 nm (3.10 eV) with a well defined absorption peak at around 285 nm (4.35 eV). The estimated direct bandgaps were obtained to be 3.19, 3.16, 3.14, and 3.13 eV for the ZnO samples thermally decomposed at 400, 500, 600, and 700°C, respectively. All the samples exhibited room-temperature photoluminescence (PL) showing a strong UV emission band at ∼395 nm (3.14 eV), a weak blue band at ∼420 nm (2.95 eV), a blue–green band at ∼485 nm (2.56 eV), and a very weak green band at ∼529 nm (2.35 eV). The mechanisms responsible for photoluminescence of the samples are discussed.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    H.W. Lehman, R. Widmer, J. Appl. Phys. 44, 3868 (1973)

    Article  ADS  Google Scholar 

  2. 2.

    S. Liang, H. Sheng, Y. Liu, Z. Hio, Y. Lu, H. Shen, J. Cryst. Growth 225, 110 (2001)

    Article  ADS  Google Scholar 

  3. 3.

    N. Saito, H. Haneda, T. Sekiguchi, N. Ohashi, I. Sakagushi, K. Koumoto, Adv. Mater. 14, 418 (2002)

    Article  Google Scholar 

  4. 4.

    E. Olsson, G. Dunlop, J. Am. Ceram. Soc. 76, 65 (1993)

    Article  Google Scholar 

  5. 5.

    Z.L. Wang, J.H. Song, Science 312, 242 (2006)

    Article  ADS  Google Scholar 

  6. 6.

    K.M. Krishnan, A.B. Pakhomov, Y. Bao, P. Blomqvist, Y. Chun, M. Gonzales, K. Griffin, X. Ji, B.K. Roberts, J. Mater. Sci. 41, 793 (2006)

    Article  Google Scholar 

  7. 7.

    V.R. Palkar, Nanostruct. Mater. 11, 369 (1999)

    Article  Google Scholar 

  8. 8.

    Y.X. Li, K.J. Klabunde, Chem. Mater. 4, 611 (1992)

    Article  Google Scholar 

  9. 9.

    H.K. Park, D.K. Kim, C.H. Kim, J. Am. Ceram. Soc. 80, 743 (1997)

    Article  Google Scholar 

  10. 10.

    T.T. Kodas, Adv. Mater. 6, 180 (1989)

    Article  Google Scholar 

  11. 11.

    B.P. Zhang, N.T. Binh, K. Wakatsuki, Y. Segawa, Y. Yamada, N. Usami, M. Kawasaki, H. Koinuma, J. Phys. Chem. B 108, 10899 (2004)

    Article  Google Scholar 

  12. 12.

    G.Z. Shen, Y. Bando, Ch.J. Lee, J. Phys. Chem. B 109, 10578 (2005)

    Article  Google Scholar 

  13. 13.

    S.I. Hirano, Ceram. Bull. 66, 1342 (1987)

    Google Scholar 

  14. 14.

    H. Zhang, D.R. Yang, D.S. Li, X.Y. Ma, S.Z. Li, D.L. Que, Cryst. Growth Des. 2, 547 (2005)

    Article  Google Scholar 

  15. 15.

    L. Shen, N. Bao, K. Yanagisawa, K. Domen, A. Gupta, C.A. Grimes, Nanotechnology 17, 5117 (2006)

    Article  ADS  Google Scholar 

  16. 16.

    B. Liu, H.C. Zeng, Langmuir 20, 4196 (2004)

    Article  Google Scholar 

  17. 17.

    S.J. Pearton, D.P. Norton, K. Ip, Y.W. Heo, T. Steiner, Prog. Mater. Sci. 580, 293–340 (2005)

    Article  Google Scholar 

  18. 18.

    B.D. Cullity, S.R. Stock, Elements of X-ray Diffraction (Prentice Hall, New York, 2001)

    Google Scholar 

  19. 19.

    S.C. Liufu, H.N. Xiao, Y.P. Li, Polym. Degrad. Stab. 87, 103 (2005)

    Article  Google Scholar 

  20. 20.

    Y.J. Kwon, K.H. Kim, C.S. Lim, K.B. Shim, J. Ceram. Proc. Res. 3, 146 (2002)

    Google Scholar 

  21. 21.

    R.F. Silva, M.E.D. Zaniquelli, Colloids Surf. A 198–200, 551 (2002)

    Article  Google Scholar 

  22. 22.

    E. Ziegler, A. Heinrich, H. Oppermann, G. Stover, Phys. Status Solidi A 66, 635 (1981)

    Article  Google Scholar 

  23. 23.

    P. Zu, Z.K. Tang, G.K.L. Wong, M. Kawasaki, A. Ohtomo, H. Koinuma, Y. Segawa, Solid State Commun. 103, 459 (1997)

    Article  ADS  Google Scholar 

  24. 24.

    V. Srikant, D.R. Clarke, J. Appl. Phys. 83, 5447 (1998)

    Article  ADS  Google Scholar 

  25. 25.

    S. Maensiri, C.P. Laokul, V. Promarak, J. Cryst. Growth 289, 102 (2006)

    Article  ADS  Google Scholar 

  26. 26.

    K. Vanheusden, W.L. Warren, C.H. Sesger, D.R. Tallant, J.A. Voigt, B.E. Gnage, J. Appl. Phys. 79, 7983 (1996)

    Article  ADS  Google Scholar 

  27. 27.

    S.C. Lyu, Y. Zhang, H. Ruh, H. Lee, H. Shim, E. Suh, C.J. Lee, Chem. Phys. Lett. 363, 134 (2002)

    Article  ADS  Google Scholar 

  28. 28.

    J. Wang, L. Gao, Solid State Commun. 132, 269 (2004)

    Article  ADS  Google Scholar 

  29. 29.

    K. Pato, E. Swatsitang, W. Jareonboon, S. Maensiri, V. Promarak, Optoelec. Adv. Mater. Rapid Commun. 1, 287 (2007)

    Google Scholar 

  30. 30.

    S. Maensiri, C. Masingboon, V. Promarak, S. Seraphin, Opt. Mater. 29, 1700 (2007)

    Article  ADS  Google Scholar 

  31. 31.

    Y. Li, G.S. Cheng, L.D. Zhang, J. Mater. Res. 15, 2305 (2000)

    Article  ADS  Google Scholar 

  32. 32.

    S. Monticone, R. Tufeu, A.V. Kanaev, J. Phys. Chem. B 102, 2854 (1998)

    Article  Google Scholar 

  33. 33.

    B.D. Yao, Y.F. Chan, N. Wang, Appl. Phys. Lett. 81, 757 (2002)

    Article  ADS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Santi Maensiri.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Labuayai, S., Promarak, V. & Maensiri, S. Synthesis and optical properties of nanocrystalline ZnO powders prepared by a direct thermal decomposition route. Appl. Phys. A 94, 755–761 (2009). https://doi.org/10.1007/s00339-008-4984-2

Download citation

PACS

  • 61.46.Hk
  • 68.37.Lp
  • 78.30.Fs
  • 78.40.Fy
  • 78.67.Bf
  • 78.55.Et
  • 81.05.Dz
  • 81.07.Bc
  • 81.07.Wx
  • 81.20.Ka
  • 81.70.Pg