Applied Physics A

, Volume 96, Issue 1, pp 161–169 | Cite as

Imaging and spectroscopy of defects in semiconductors using aberration-corrected STEM

Invited paper


The distribution of single dopant or impurity atoms can dramatically alter the properties of semiconductor materials. The sensitivity to detect and localize such single atoms has been greatly improved by the development of aberration correctors for scanning transmission electron microscopes. Today, electron probes with diameters well below 1 Å are available thanks to the improved electron optics. Simultaneous acquisition of image signals and electron energy-loss spectroscopy data provides means of characterization of defect structures in semiconductors with unprecedented detail. In addition to an improvement of the lateral spatial resolution, depth sensitivity is greatly enhanced because of the availability of larger probe forming angles. We report the characterization of an alternate gate dielectric interface structure. Isolated Hf atoms are directly imaged within a SiO2 thin film formed between an HfO2 layer and the silicon substrate. Electron energy-loss spectroscopy shows significant changes of the silicon valence state across the interface structure.


68.37.Ma 68.37.-d 85.30.De 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. Moore, Electronics 38, 00 (1965) Google Scholar
  2. 2.
    P.A. Packan, Science 285, 2079 (1999) CrossRefGoogle Scholar
  3. 3.
    M. Varela, A.R. Lupini, K. van Benthem, A.Y. Borisevich, M.F. Chisholm, N. Shibata, E. Abe, S.J. Pennycook, Annu. Rev. Mater. Res. 35, 539 (2005) CrossRefGoogle Scholar
  4. 4.
    P.E. Batson, N. Dellby, O.L. Krivanek, Nature 418, 617 (2002) CrossRefADSGoogle Scholar
  5. 5.
    P.D. Nellist, M.F. Chisholm, N. Dellby, O.L. Krivanek, M.F. Murfitt, Z.S. Szilagyl, A.R. Lupini, A.Y. Borisevich, W.H. Sides, S.J. Pennycook, Science 305, 1741 (2004) CrossRefGoogle Scholar
  6. 6.
    S. Wang, A.Y. Borisevich, S.N. Rashkeev, K. Sohlberg, M.V. Glazoff, S.J. Pennycook, S.T. Pantelides, Nat. Mater. 3, 143 (2004) CrossRefADSGoogle Scholar
  7. 7.
    H.R. Huff, D.C. Gilmer (eds.), High dielectric Constant Materials (Springer, Berlin, 2005) Google Scholar
  8. 8.
    Y.-S. Lin, R. Puthenkovilakam, J.P. Chang, C. Bouldin, I. Levin, N.V. Nguyen, J. Ehrstein, Y. Sun, P. Pianetta, T. Conard, W. Vandervorst, V. Venturo, S. Selbrede, J. Appl. Phys. 93, 5945 (2003) CrossRefADSGoogle Scholar
  9. 9.
    G. Bersuker, J. Barnett, N. Moumen, B. Foran, C.D. Young, P. Lysaght, J. Peterson, B.H. Lee, P.M. Zeitzoff, H.R. Huff, Jpn. J. Appl. Phys. 43, 7899 (2004) CrossRefADSGoogle Scholar
  10. 10.
    D. Chi, P.C. McIntyre, Appl. Phys. Lett. 85, 4699 (2004) CrossRefADSGoogle Scholar
  11. 11.
    G. Bersuker, C.S. Park, J. Barnett, P.S. Lysaght, P.D. Kirsch, C.D. Young, R. Choi, B.H. Lee, B. Foran, K. van Benthem, S.J. Pennycook, P.M. Lenahan, J.T. Ryan, J. Appl. Phys. 100, 094108 (2006) CrossRefADSGoogle Scholar
  12. 12.
    K. van Benthem, A.R. Lupini, M. Kim, H.S. Baik, S.J. Doh, J.-H. Lee, M.P. Oxley, S.D. Findlay, L.J. Allen, S.J. Pennycook, Appl. Phys. Lett. 87, 034104 (2005) CrossRefADSGoogle Scholar
  13. 13.
    K. van Benthem, A.R. Lupini, M.P. Oxley, S.D. Findlay, L.J. Allen, S.J. Pennycook, Ultramicroscopy 106, 1062 (2006) CrossRefGoogle Scholar
  14. 14.
    P.E. Batson, Microsc. Microanal. 11(2), 2124 (2005) CrossRefGoogle Scholar
  15. 15.
    M.P. Agustin, L.R.C. Fonseca, J.C. Hooker, S. Stemmer, Appl. Phys. Lett. 87, 121909 (2005) CrossRefADSGoogle Scholar
  16. 16.
    D.O. Klenov, T.E. Mates, S. Stemmer, Appl. Phys. Lett. 89, 041918 (2006) CrossRefADSGoogle Scholar
  17. 17.
    O.L. Krivanek, P.D. Nellist, N. Dellby, M.F. Murfitt, Z. Szilagyi, Ultramicroscopy 96, 229 (2003) CrossRefGoogle Scholar
  18. 18.
    K. van Benthem, S.N. Rashkeev, S.J. Pennycook, in Characterization and Metrology for ULSI Technology, ed. by D.G. Seiler, A.C. Diebold, R. McDonald, C.R. Ayre, R.P. Khosla, S. Zollner, E.M. Secula. American Institute of Physics Conference Proceedings, vol. 788 (2005), p. 79 Google Scholar
  19. 19.
    A.R. Lupini, S.J. Pennycook, Ultramicroscopy 96, 313 (2005) CrossRefGoogle Scholar
  20. 20.
    A.Y. Borisevich, A.R. Lupini, S.J. Pennycook, Proc. Natl. Acad. Sci. 103, 3044 (2006) CrossRefADSGoogle Scholar
  21. 21.
    P.A. Midgley, M. Weyland, Ultramicroscopy 96, 413 (2003) CrossRefGoogle Scholar
  22. 22.
    I. Arslan, T.J.V. Yates, N.D. Browning, P.A. Midgley, Science 309, 2195 (2005) CrossRefADSGoogle Scholar
  23. 23.
    R.F. Egerton, Electron Energy Loss Spectroscopy in the Electron Microscope, 2nd edn. (Plenum Press, New York, 1996) Google Scholar
  24. 24.
    H. Kohl, H. Rose, Adv. Imaging Electron Phys. 65, 173 (1985) Google Scholar
  25. 25.
    A. Strecker, U. Bäder, M. Kelsch, U. Salzberger, M. Sycha, M. Gao, G. Richter, K. van Benthem, Z. Metallkd. 94, 290 (2003) Google Scholar
  26. 26.
    J.C. Lee, S.J. Oh, M.J. Cho, C.S. Hwang, R.J. Jung, Appl. Phys. Lett. 84, 1305 (2004) CrossRefADSGoogle Scholar
  27. 27.
    P.S. Lysaght, G. Bersuker, J.J. Peterson, C.D. Young, P. Majhi, B.-H. Lee, H.R. Huff, Appl. Phys. Lett. 87, 082903 (2005) CrossRefADSGoogle Scholar
  28. 28.
    N. Ikarashi, K. Watanabe, K. Masuzaki, T. Nakagawa, Appl. Phys. Lett. 88, 101912 (2006) CrossRefADSGoogle Scholar
  29. 29.
    A. Marinopulos, K. van Benthem, S.N. Rashkeev, S.J. Pennycook, S.T. Pantelides, Phys. Rev. Lett. 77, 195317 (2008) ADSGoogle Scholar
  30. 30.
    R. Buczko, G. Duscher, S.J. Pennycook, S.T. Pantelides, Phys. Rev. Lett. 85, 2168 (2000) CrossRefADSGoogle Scholar
  31. 31.
    M.L. Green, E.P. Gusev, R. Degraeve, E.L. Garfunkel, J. Appl. Phys. 90, 2057 (2001) CrossRefADSGoogle Scholar
  32. 32.
    Gatan Inc., 5794 W. Las Positas Blvd., Pleasanton, CA 94588, USA.

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Center for Nanophase Materials SciencesOak Ridge National LaboratoryOak RidgeUSA
  2. 2.Materials Science and Technology DivisionOak Ridge National LaboratoryOak RidgeUSA
  3. 3.Department for Chemical Engineering and Materials ScienceUniversity of California at DavisDavisUSA

Personalised recommendations