Skip to main content
Log in

Exponential ionic drift: fast switching and low volatility of thin-film memristors

  • Rapid communication
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

We investigate the exponential dependence of switching speeds in thin-film memristors for high electric fields and elevated temperatures. An existing nonlinear ionic drift model and our simulation results explain the very large ratios for the state lifetime to switching speed experimentally observed in devices for which resistance switching is due to ion migration. Given the activation barriers of the drifting species, it is possible to predict the volatility and switching time for various material systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.J. Frank, R.H. Dennard, E. Nowak, P.M. Solomon, Y. Taur, H.S.P. Wong, Proc. IEEE 89, 259 (2001)

    Article  Google Scholar 

  2. K.K. Likharev, D.B. Strukov, in Introducing Molecular Electronics. Lecture Notes in Physics (Springer, Berlin, 2006), p. 447

    Chapter  Google Scholar 

  3. P.J. Kuekes, G.S. Snider, R.S. Williams, Sci. Am. 293, 72 (2005)

    Article  Google Scholar 

  4. D.B. Strukov, G.S. Snider, D.R. Stewart, R.S. Williams, Nature 453, 80 (2008)

    Article  ADS  Google Scholar 

  5. R. Waser, M. Aono, Nat. Mater. 6, 833 (2007)

    Article  ADS  Google Scholar 

  6. J.C. Scott, L.D. Bozano, Adv. Mater. 19, 1452 (2007)

    Article  Google Scholar 

  7. N.F. Mott, R.W. Gurney, Electronic Processes in Ionic Crystals, 2nd edn. (Dover, New York, 1940)

    MATH  Google Scholar 

  8. J. Blanc, D.L. Staebler, Phys. Rev. B 4, 3548 (1971)

    Article  ADS  Google Scholar 

  9. J. He, R.K. Behera, M.W. Finnis, X. Li, E.C. Dickey, S.R. Phillpot, S.B. Sinnott, Acta Mater. 55, 4325 (2007)

    Article  Google Scholar 

  10. J.J. Yang, M.D. Pickett, X. Li, D.A.A. Ohlberg, D.R. Stewart, R.S. Williams, Nat. Nanotechnol. 3, 429 (2008)

    Article  Google Scholar 

  11. C.A. Richter, D.R. Stewart, D.A.A. Ohlberg, R.S. Williams, Appl. Phys. A 80, 1355 (2005)

    Article  Google Scholar 

  12. K. Terabe, T. Hasegawa, T. Nakayama, M. Aono, Nature 433, 47 (2005)

    Article  ADS  Google Scholar 

  13. T. Tamura, T. Hasegawa, K. Terabe, T. Nakayama, T. Sakamoto, H. Sunamura, H. Kawaura, S. Hosaka, M. Aono, Jpn. J. Appl. Phys. 45, L364 (2006)

    Article  ADS  Google Scholar 

  14. D.B. Strukov, J.L. Borghetti, R.S. Williams, Small (2008, accepted)

  15. A.G. Tangena, J. Middlehoek, N.F. de Rooij, J. Appl. Phys. 49, 2876 (1978)

    Article  ADS  Google Scholar 

  16. International technology roadmap for semiconductor, 2007 edition. Online at http://www.itrs.net

  17. N. Cabrera, N.F. Mott, Rep. Prog. Phys. 12, 163 (1948)

    Article  ADS  Google Scholar 

  18. S. Murugavel, B. Roling, J. Non-Cryst. Solids 351, 2819 (2005)

    Article  ADS  Google Scholar 

  19. M.J. Dignam, J. Phys. Chem. 29, 249 (1967)

    Google Scholar 

  20. H. Iddir, S. Ogut, P. Zapol, N.D. Browning, Phys. Rev. B 75, 073203 (2007)

    Article  ADS  Google Scholar 

  21. W.G. Spitzer, R.C. Miller, D. A Kleinman, L.E. Howarth, Phys. Rev. 126, 1710 (1962)

    Article  ADS  Google Scholar 

  22. R.A. Parker, Phys. Rev. 124, 1713 (1961)

    Article  ADS  Google Scholar 

  23. R.A. Parker, Phys. Rev. 124, 1719 (1961)

    Article  ADS  Google Scholar 

  24. J. McPherson, J.Y. Kim, A. Shanware, H. Mogul, Appl. Phys. Lett. 82, 2121 (2003)

    Article  ADS  Google Scholar 

  25. R. Waser, R. Hagenbeck, Acta Mater. 48, 797 (2000)

    Article  Google Scholar 

  26. J.H. Park, B.T. Ahn, J. Appl. Phys. 93, 883 (2003)

    Article  ADS  Google Scholar 

  27. G. Mills, H. Jonsson, Phys. Rev. Lett. 72, 1124 (1994)

    Article  ADS  Google Scholar 

  28. P.I. Kingsbury, W.D. Ohlsen, O.W. Johnson, Phys. Rev. 175, 1099 (1968)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitri B. Strukov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Strukov, D.B., Williams, R.S. Exponential ionic drift: fast switching and low volatility of thin-film memristors. Appl. Phys. A 94, 515–519 (2009). https://doi.org/10.1007/s00339-008-4975-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-008-4975-3

PACS

Navigation