Skip to main content
Log in

Assembly of sol–gel-grown Li x CoO2 nanocrystals through electromagnetic irradiation

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

We report the fabrication of assembled nanostructures from the pre-synthesized nanocrystals building blocks through optical means of exciton formation and dissociation. We demonstrate that Li x CoO2 nanocrystals assemble to an acicular architecture, upon prolonged exposure to ultraviolet–visible radiation emitted from a 125 W mercury vapor lamp, through intermediate excitation of excitons. The results obtained in the present study clearly show how nanocrystals of various materials with band gaps appropriate for excitations of excitons at given optical wavelengths can be assembled to unusual nanoarchitectures through illumination with incoherent light sources. The disappearance of exciton bands due to Li x CoO2 phase in the optical spectrum of the irradiated film comprising acicular structure is consistent with the proposed mechanism of exciton dissociation in the observed light-induced assembly process. The assembly process occurs through attractive Coulomb interactions between charged dots created upon exciton dissociation. Our work presents a new type of nanocrystal assembly process that is driven by light and exciton directed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Whang, S. Jin, Y. Wu, C.M. Lieber, Nano Lett. 3, 1255 (2003)

    Article  Google Scholar 

  2. F. Kim, S. Kwan, J. Akan, P. Yang, J. Am. Chem. Soc. 123, 4360 (2001)

    Article  Google Scholar 

  3. A. Tao, F. Kim, C. Hess, J. Goldberger, R. He, Y. Sun, Y. Xia, P. Yang, Nano Lett. 3, 1229 (2003)

    Article  Google Scholar 

  4. N.R. Jana, L.A. Gearheart, S.O. Obare, C.J. Johnson, K.J. Edler, S. Mann, C.J. Murphy, J. Mater. Chem. 12, 2909 (2002)

    Article  Google Scholar 

  5. L.-S. Li, A.P. Alivisatos, Adv. Mater. 15, 408 (2003)

    Article  Google Scholar 

  6. L.-S. Li, J. Walda, L. Manna, A.P. Alivisatos, Nano Lett. 2, 557 (2002)

    Article  Google Scholar 

  7. Y. Huang, X. Duan, Q. Wei, C.M. Lieber, Science 291, 630 (2001)

    Article  ADS  Google Scholar 

  8. B. Messer, J.H. Song, P.J. Yang, J. Am. Chem. Soc. 122, 10232 (2000)

    Article  Google Scholar 

  9. A. Gole, C.J. Orendorff, C.J. Murphy, Langmuir 20, 7117 (2004)

    Article  Google Scholar 

  10. B.R. Martin, S.K.St. Angelo, T.E. Mallouk, Adv. Funct. Mater. 12, 759 (2002)

    Article  Google Scholar 

  11. K.K. Caswell, J.N. Wilson, U.H.F. Bunz, C.J. Murphy, J. Am. Chem. Soc. 125, 13914 (2003)

    Article  Google Scholar 

  12. E. Dujardin, L.-B. Hsin, C.R.C. Wang, S. Mann, Chem. Commun. 1264 (2001)

  13. B.R. Martin, D.J. Dermody, B.D. Reiss, M. Fang, L.A. Lyon, M.J. Natan, Adv. Mater. 11, 1021 (1999)

    Article  Google Scholar 

  14. J.K.N. Mbindyo, B.D. Reiss, B.R. Martin, C.D. Keating, M.J. Natan, T.E. Mallouk, Adv. Mater. 13, 249 (2001)

    Article  Google Scholar 

  15. C.A. Mirkin, R.L. Letsinger, R.C. Mucic, J.J. Storhoff, Nature 382, 607 (1996)

    Article  ADS  Google Scholar 

  16. P.A. Smith, C.D. Nordquist, T.N. Jackson, T.S. Mayer, B.R. Martin, J. Mbindyo, T.E. Mallouk, Appl. Phys. Lett. 77, 1399 (2000)

    Article  ADS  Google Scholar 

  17. O. Harnack, C. Pacholski, H. Weller, A. Yasuda, J.M. Wessels, Nano Lett. 3, 1097 (2003)

    Article  Google Scholar 

  18. M. Lahav, T. Sehayek, A. Vaskevich, I. Rubinstein, Angew. Chem. Int. Ed. Engl. 42, 5576 (2003)

    Article  Google Scholar 

  19. T. Sehayek, M. Lahav, R. Popovitz-Biro, A. Vaskevich, A. Rubinstein, Chem. Mat. 17, 3743 (2005)

    Article  Google Scholar 

  20. A.J. Mieszawska, F.P. Zamborini, Chem. Mat. 17, 3415 (2005)

    Article  Google Scholar 

  21. K. Ishii, T. Iwai, K. Inoue, Proc. SPIE 4598, 80 (2001)

    Article  ADS  Google Scholar 

  22. A. Franceschetti, A. Zunger, Phys. Rev. B 63, 153304 (2001)

    Article  ADS  Google Scholar 

  23. C.A. Huber, T.E. Huber, M. Sadoqi, L.A. Lubin, S. Manalis, C.B. Prater, Science 263, 800 (1994)

    Article  ADS  Google Scholar 

  24. R. Viswanathan, M.B. Heaney, Phys. Rev. Lett. 75, 4433 (1995)

    Article  ADS  Google Scholar 

  25. J.C. Dupin et al., Thin Solid Films 384, 23 (2001)

    Article  ADS  Google Scholar 

  26. E.G. Gal’pern, I.V. Stankevich, A.L. Chistykov, L.A. Chernozatonskii, Chem. Phys. Lett. 214, 345 (1993)

    Article  ADS  Google Scholar 

  27. J.W. Gadzuk, M. Šunjić, Phys. Rev. B 12, 524 (1975)

    Article  Google Scholar 

  28. D.R. Penn, Phys. Rev. Lett. 42, 921 (1979)

    Article  ADS  Google Scholar 

  29. A.C.M. Carvalho, M.C. dos Santos, J. Non-Cryst. Solids 338–340, 254 (2004)

    Article  Google Scholar 

  30. J. Molenda, A. Stoklosa, T. Bak, Solid State Ionics 36, 53 (1989)

    Article  Google Scholar 

  31. D. Alder, Rev. Mod. Phys. 40, 714 (1968)

    Article  ADS  Google Scholar 

  32. B.I. Halperin, T.M. Rice, Rev. Mod. Phys. 40, 755 (1968)

    Article  ADS  Google Scholar 

  33. M.T. Czyzyk, R. Potze, G.A. Sawatzky, Phys. Rev. B 46, 3729 (1992)

    Article  ADS  Google Scholar 

  34. K. Kushida, K. Kuriyama, Solid State Commun. 118, 615 (2001)

    Article  ADS  Google Scholar 

  35. N.A.W. Holzwarth, S.G. Louie, S. Rabii, Phys. Rev. B 28, 1013 (1983)

    Article  ADS  Google Scholar 

  36. D. Schooss, A. Mews, A. Eychmueller, H. Weller, Phys. Rev. B 49, 17072 (1994)

    Article  ADS  Google Scholar 

  37. B.G. Osborne, Near infrared spectroscopy in food analysis, in Enclyclopedia of Analytical Chemistry, ed. by R.A. Meyers (Wiley, New York, 1986)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahua Das.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Das, M., Ranjith, R., Bittencourt, C. et al. Assembly of sol–gel-grown Li x CoO2 nanocrystals through electromagnetic irradiation. Appl. Phys. A 95, 523–536 (2009). https://doi.org/10.1007/s00339-008-4936-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-008-4936-x

PACS

Navigation