Skip to main content
Log in

Submicrometer-MOS capacitor with ultra high capacitance biased by Au nanoelectrodes

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The ultimate limits of size of the current metal-oxide-semiconductor capacitors can be overcome by preparation of three-dimensional devices that can vertically be biased using one-dimensional metal nanostructures. Here, we present a general and efficient approach to the assembly and integration of Au nanocrystals into functional nanoelectrodes of three-dimensional submicrometer-MOS (0.35 μm2) capacitors, presenting an ultra high capacitance (24±1 pF). The Au nanocrystals were directly produced into a nanoporous template of anodized aluminum oxide that was evaluated, and the electrical characterization of this device corroborates the formation of the MOS capacitor. Flat band voltage is independent of sweep voltage range, and negligible hysteresis of capacitance-voltage curves is observed when sweep voltage ranges from positive to negative and turned again to positive bias. In addition, experimental results match theoretical analysis and indicate the presence of free surface charges stored in the Au nanostructures. The demonstrated ability to control the assembling of the nanocrystals and the results of electrical characterization indicate that the embedded Au nanoelectrodes have a high potential for memory applications based on three-dimensional devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.R. Ekanayake, M. Ford, M. Cortie, Mater. Forum 15, 20 (2004)

    Google Scholar 

  2. Y. Li, F. Qian, J. Xiang, C.M. Lieber, Mater. Today 9, 18 (2006)

    Article  Google Scholar 

  3. J.E. Jang, S.N. Cha, Y.J. Choi, D.J. Kang, T.P. Butler, D.G. Hasko, J.E. Jung, J.M. Kim, G.A.J. Amaratunga, Nature Nanotechnol. 3, 26 (2008)

    Article  ADS  Google Scholar 

  4. J.I. Sohn, Y. Kim, C. Nam, B.K. Cho, T. Seong, Appl. Phys. Lett. 87, 123115 (2005)

    Article  ADS  Google Scholar 

  5. S.K. Saha, M. DaSilva, Q. Hang, T. Sands, D.B. Janes, Nanotechnology 17, 2284 (2006)

    Article  ADS  Google Scholar 

  6. L. Li, Y. Yang, X. Fang, M. Kong, G. Li, L. Zhang, Solid State Commun. 141, 492 (2007)

    Article  ADS  Google Scholar 

  7. S.K. Saha, Phys. Rev. Lett. 69, 416 (2004)

    Google Scholar 

  8. M. Wirtz, C.R. Martin, Adv. Mater. 15, 455 (2003)

    Article  Google Scholar 

  9. S.M. Sze, Semiconductor Devices: Physics and Technology (Wiley, New York, 2002), pp. 507–522

    Google Scholar 

  10. C.R. Martin, Science 266, 1961 (1994)

    Article  ADS  Google Scholar 

  11. O. Rabin, P.R. Herz, Y. Lin, A.I. Akinwande, S.B. Cronin, M.S. Dresselhaus, Adv. Funct. Mater. 13, 631 (2003)

    Article  Google Scholar 

  12. H. Masuda, F. Hasegawa, S. Ono, J. Electrochem. Soc. 144, L127 (1997)

    Article  Google Scholar 

  13. S. Smith, A.J. Walton, S. Bond, A.W.S. Ross, J.T.M. Stevenson, A.M. Gundlach, IEEE Trans. Semicond. Manuf. 16, 199 (2003)

    Article  Google Scholar 

  14. B. Das, C. Garman, Microelectron. J. 37, 695 (2006)

    Article  Google Scholar 

  15. J.H. Kim, K.H. Baek, C.K. Kim, Y.B. Kim, C.S. Yoon, Appl. Phys. Lett. 90, 123118 (2007)

    Article  ADS  Google Scholar 

  16. B. Park, K. Cho, H. Kim, S. Kim, Semicond. Sci. Technol. 21, 975 (2006)

    Article  ADS  Google Scholar 

  17. J. Lambert, C. Guthmann, C. Ortega, M. Saint-Jean, J. Appl. Phys. 91, 9161 (2002)

    Article  ADS  Google Scholar 

  18. I. Vrublevsky, A. Jagminas, J. Schreckenbach, W.A. Goedel, Appl. Surf. Sci. 253, 4680 (2007)

    Article  ADS  Google Scholar 

  19. I. Vrublevsky, V. Parkoun, J. Schreckenbach, W.A. Goedel, Appl. Surf. Sci. 252, 5100 (2006)

    Article  ADS  Google Scholar 

  20. J.K. Kim, H.J. Cheong, Y. Kim, J.Y. Yi, H.J. Park, Appl. Phys. Lett. 82, 2527 (2003)

    Article  ADS  Google Scholar 

  21. S.B. Cronin, Y. Lin, O. Rabin, M.R. Black, J.Y. Ying, M.S. Dresselhaus, P.L. Gai, J. Minet, J. Issi, Nanotechnology 13, 653 (2002)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Kisner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kisner, A., Aguiar, M.R., Vaz, A.F. et al. Submicrometer-MOS capacitor with ultra high capacitance biased by Au nanoelectrodes. Appl. Phys. A 94, 831–836 (2009). https://doi.org/10.1007/s00339-008-4860-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-008-4860-0

PACS

Navigation