Kinetic analysis of the photochemically and thermally induced isomerization of an azobenzene derivative on Au(111) probed by two-photon photoemission


Two-photon photoemission (2PPE) spectroscopy is employed to quantify the photochemically and thermally induced trans cis isomerization of the molecular switch tetra-tert-butyl-azobenzene (TBA) adsorbed on an Au(111) surface. The isomerization of TBA is accompanied by significant changes in the electronic structure, namely different energetic positions of the lowest unoccupied molecular orbital of both isomers and the appearance of an unoccupied final state for cis-TBA. A quantitative analysis of these effects allows the calculation of cross sections for the reversible isomerization and determination of the ratio between both isomers in the photostationary state, where 55±5% of the molecules are switched to cis-TBA. The cross section for the photoinduced transcis isomerization is 3.3±0.5×10−22 cm2, while for the back reaction, a value of 2.7±0.5×10−22 cm2 is obtained. Furthermore a pronounced reduction of the activation energy by a factor of four compared to the free molecule is found for the thermally activated cistrans isomerization of the surface-adsorbed TBA. This demonstrates that the potential energy landscape of the adsorbed TBA is remarkably different from the liquid phase.

This is a preview of subscription content, log in to check access.


  1. 1.

    M. Irie (ed.), Photochromism: memories and switches. Chem. Rev. 100, 1683 (2000)

  2. 2.

    B.L. Feringa, Molecular Switches (Wiley-VCH, Weinheim, 2001)

    Google Scholar 

  3. 3.

    M.R. Bryce, M.C. Petty, D. Bloor, Molecular Electronics (Oxford University Press, New York, 1995)

    Google Scholar 

  4. 4.

    J.K. Gimzewski, C. Joachim, Science 238, 1683 (1999)

    ADS  Article  Google Scholar 

  5. 5.

    C. Joachim, J.K. Gimzewski, A. Aviram, Nature 408, 541 (2000)

    ADS  Article  Google Scholar 

  6. 6.

    Z. F Liu, K. Hashimoto, A. Fujishima, Nature 347, 658 (1990)

    ADS  Article  Google Scholar 

  7. 7.

    T. Ikeda, O. Tsutsumi, Science 268, 1873 (1995)

    ADS  Article  Google Scholar 

  8. 8.

    C. Zhang, M.-H. Du, H.-P. Cheng, X.-G. Zhang, A.E. Roitberg, J.L. Krause, Phys. Rev. Lett. 92, 158301 (2004)

    ADS  Article  Google Scholar 

  9. 9.

    N. Tamai, O.H. Miyasaka, Chem. Rev. 100, 1875 (2000)

    Article  Google Scholar 

  10. 10.

    H. Rau, in Photochromism—Molecules and Systems, ed. by H. Dürr, H. Bouas-Laurent (Elsevier, Amsterdam, 2003)

    Google Scholar 

  11. 11.

    D. Fanghänel, G. Timpe, V. Orthman, in Organic Photochromes, ed. by A.V. El’tsov (Consultants Bureau, New York, 1990)

    Google Scholar 

  12. 12.

    D. Dulic, S.J. van der Molen, T. Kudernac, H.T. Jonkman, J.J.D. de Jong, T.N. Bowden, J. van Esch, L.B. Feringa, J.B. van Wees, Phys. Rev. Lett. 91, 207402 (2003)

    ADS  Article  Google Scholar 

  13. 13.

    B.-Y. Choi, S.-J. Kahng, S. Kim, H. Kim, H.W. Kim, Y.J. Song, J. Ihm, Y. Kuk, Phys. Rev. Lett. 96, 156106 (2006)

    ADS  Article  Google Scholar 

  14. 14.

    J. Henzl, M. Mehlhorn, H. Gawronski, K.-H. Rieder, K. Morgenstern, Angew. Chem. Int. Ed. 45, 603 (2006)

    Article  Google Scholar 

  15. 15.

    M. Alemani, M.V. Peters, S. Hecht, K.-H. Rieder, F. Moresco, L. Grill, J. Am. Chem. Soc. 128, 14446 (2006)

    Article  Google Scholar 

  16. 16.

    S. Hagen, F. Leyssner, D. Nandi, M. Wolf, P. Tegeder, Chem. Phys. Lett. 444, 85 (2007)

    ADS  Article  Google Scholar 

  17. 17.

    M.J. Comstock, N. Levy, A. Kirakosian, J. Cho, F. Lauterwasser, J.H. Harvey, D.A. Strubbe, J.M.J. Fréchet, D. Trauner, S.G. Louie, M.F. Crommie, Phys. Rev. Lett. 99, 038301 (2007)

    ADS  Article  Google Scholar 

  18. 18.

    L. Óvári, M. Wolf, P. Tegeder, J. Phys. Chem. C 111, 15370 (2007)

    Article  Google Scholar 

  19. 19.

    P.S. Kirchmann, P.A. Loukakos, U. Bovensiepen, M. Wolf, New J. Phys. 7, 113 (2005)

    ADS  Article  Google Scholar 

  20. 20.

    P. Tegeder, S. Hagen, F. Leyssner, M.V. Peters, S. Hecht, T. Klamroth, P. Saalfrank, M. Wolf, Appl. Phys. A 88, 465 (2007)

    ADS  Article  Google Scholar 

  21. 21.

    M. Alemani, PhD thesis, Freie Universität Berlin, 2007;

  22. 22.

    M. Alemani, S. Selvanathan, F. Ample, M.V. Peters, K.-H. Rieder, F. Moresco, Ch. Joachim, S. Hecht, L. Grill, J. Phys. Chem. C 112, 10509 (2008)

    Article  Google Scholar 

  23. 23.

    M.J. Comstock, N. Levy, J. Cho, L. Berbil-Bautista, M.F. Crommie, D.A. Poulsen, J.M.J. Fréchet, Appl. Phys. Lett. 92, 123107 (2008)

    ADS  Article  Google Scholar 

  24. 24.

    S. Weigelt, C. Busse, L. Petersen, E. Rauls, B. Hammer, K.V. Gothelf, F. Besenbacher, T.R. Linderoth, Nat. Mater. 5, 112 (2006)

    ADS  Article  Google Scholar 

  25. 25.

    P. Saalfrank, Universität Potsdam, private communication

  26. 26.

    S. Hagen, P. Kate, F. Leyssner, D. Nandi, M. Wolf, P. Tegeder, (2008, submitted)

Download references

Author information



Corresponding author

Correspondence to Petra Tegeder.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hagen, S., Kate, P., Peters, M.V. et al. Kinetic analysis of the photochemically and thermally induced isomerization of an azobenzene derivative on Au(111) probed by two-photon photoemission. Appl. Phys. A 93, 253–260 (2008).

Download citation


  • 82.65.+r
  • 79.60.-i
  • 82.50.-m
  • 82.30.Qt
  • 82.20.Pm