Advertisement

Applied Physics A

, Volume 93, Issue 2, pp 253–260 | Cite as

Kinetic analysis of the photochemically and thermally induced isomerization of an azobenzene derivative on Au(111) probed by two-photon photoemission

  • Sebastian Hagen
  • Peter Kate
  • Maike V. Peters
  • Stefan Hecht
  • Martin Wolf
  • Petra TegederEmail author
Article

Abstract

Two-photon photoemission (2PPE) spectroscopy is employed to quantify the photochemically and thermally induced transcis isomerization of the molecular switch tetra-tert-butyl-azobenzene (TBA) adsorbed on an Au(111) surface. The isomerization of TBA is accompanied by significant changes in the electronic structure, namely different energetic positions of the lowest unoccupied molecular orbital of both isomers and the appearance of an unoccupied final state for cis-TBA. A quantitative analysis of these effects allows the calculation of cross sections for the reversible isomerization and determination of the ratio between both isomers in the photostationary state, where 55±5% of the molecules are switched to cis-TBA. The cross section for the photoinduced transcis isomerization is 3.3±0.5×10−22 cm2, while for the back reaction, a value of 2.7±0.5×10−22 cm2 is obtained. Furthermore a pronounced reduction of the activation energy by a factor of four compared to the free molecule is found for the thermally activated cistrans isomerization of the surface-adsorbed TBA. This demonstrates that the potential energy landscape of the adsorbed TBA is remarkably different from the liquid phase.

PACS

82.65.+r 79.60.-i 82.50.-m 82.30.Qt 82.20.Pm 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Irie (ed.), Photochromism: memories and switches. Chem. Rev. 100, 1683 (2000) Google Scholar
  2. 2.
    B.L. Feringa, Molecular Switches (Wiley-VCH, Weinheim, 2001) CrossRefGoogle Scholar
  3. 3.
    M.R. Bryce, M.C. Petty, D. Bloor, Molecular Electronics (Oxford University Press, New York, 1995) Google Scholar
  4. 4.
    J.K. Gimzewski, C. Joachim, Science 238, 1683 (1999) ADSCrossRefGoogle Scholar
  5. 5.
    C. Joachim, J.K. Gimzewski, A. Aviram, Nature 408, 541 (2000) ADSCrossRefGoogle Scholar
  6. 6.
    Z. F Liu, K. Hashimoto, A. Fujishima, Nature 347, 658 (1990) ADSCrossRefGoogle Scholar
  7. 7.
    T. Ikeda, O. Tsutsumi, Science 268, 1873 (1995) ADSCrossRefGoogle Scholar
  8. 8.
    C. Zhang, M.-H. Du, H.-P. Cheng, X.-G. Zhang, A.E. Roitberg, J.L. Krause, Phys. Rev. Lett. 92, 158301 (2004) ADSCrossRefGoogle Scholar
  9. 9.
    N. Tamai, O.H. Miyasaka, Chem. Rev. 100, 1875 (2000) CrossRefGoogle Scholar
  10. 10.
    H. Rau, in Photochromism—Molecules and Systems, ed. by H. Dürr, H. Bouas-Laurent (Elsevier, Amsterdam, 2003) Google Scholar
  11. 11.
    D. Fanghänel, G. Timpe, V. Orthman, in Organic Photochromes, ed. by A.V. El’tsov (Consultants Bureau, New York, 1990) Google Scholar
  12. 12.
    D. Dulic, S.J. van der Molen, T. Kudernac, H.T. Jonkman, J.J.D. de Jong, T.N. Bowden, J. van Esch, L.B. Feringa, J.B. van Wees, Phys. Rev. Lett. 91, 207402 (2003) ADSCrossRefGoogle Scholar
  13. 13.
    B.-Y. Choi, S.-J. Kahng, S. Kim, H. Kim, H.W. Kim, Y.J. Song, J. Ihm, Y. Kuk, Phys. Rev. Lett. 96, 156106 (2006) ADSCrossRefGoogle Scholar
  14. 14.
    J. Henzl, M. Mehlhorn, H. Gawronski, K.-H. Rieder, K. Morgenstern, Angew. Chem. Int. Ed. 45, 603 (2006) CrossRefGoogle Scholar
  15. 15.
    M. Alemani, M.V. Peters, S. Hecht, K.-H. Rieder, F. Moresco, L. Grill, J. Am. Chem. Soc. 128, 14446 (2006) CrossRefGoogle Scholar
  16. 16.
    S. Hagen, F. Leyssner, D. Nandi, M. Wolf, P. Tegeder, Chem. Phys. Lett. 444, 85 (2007) ADSCrossRefGoogle Scholar
  17. 17.
    M.J. Comstock, N. Levy, A. Kirakosian, J. Cho, F. Lauterwasser, J.H. Harvey, D.A. Strubbe, J.M.J. Fréchet, D. Trauner, S.G. Louie, M.F. Crommie, Phys. Rev. Lett. 99, 038301 (2007) ADSCrossRefGoogle Scholar
  18. 18.
    L. Óvári, M. Wolf, P. Tegeder, J. Phys. Chem. C 111, 15370 (2007) CrossRefGoogle Scholar
  19. 19.
    P.S. Kirchmann, P.A. Loukakos, U. Bovensiepen, M. Wolf, New J. Phys. 7, 113 (2005) ADSCrossRefGoogle Scholar
  20. 20.
    P. Tegeder, S. Hagen, F. Leyssner, M.V. Peters, S. Hecht, T. Klamroth, P. Saalfrank, M. Wolf, Appl. Phys. A 88, 465 (2007) ADSCrossRefGoogle Scholar
  21. 21.
    M. Alemani, PhD thesis, Freie Universität Berlin, 2007; http://www.diss.fu-berlin.de/2007/238/index.html
  22. 22.
    M. Alemani, S. Selvanathan, F. Ample, M.V. Peters, K.-H. Rieder, F. Moresco, Ch. Joachim, S. Hecht, L. Grill, J. Phys. Chem. C 112, 10509 (2008) CrossRefGoogle Scholar
  23. 23.
    M.J. Comstock, N. Levy, J. Cho, L. Berbil-Bautista, M.F. Crommie, D.A. Poulsen, J.M.J. Fréchet, Appl. Phys. Lett. 92, 123107 (2008) ADSCrossRefGoogle Scholar
  24. 24.
    S. Weigelt, C. Busse, L. Petersen, E. Rauls, B. Hammer, K.V. Gothelf, F. Besenbacher, T.R. Linderoth, Nat. Mater. 5, 112 (2006) ADSCrossRefGoogle Scholar
  25. 25.
    P. Saalfrank, Universität Potsdam, private communication Google Scholar
  26. 26.
    S. Hagen, P. Kate, F. Leyssner, D. Nandi, M. Wolf, P. Tegeder, (2008, submitted) Google Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Sebastian Hagen
    • 1
  • Peter Kate
    • 1
  • Maike V. Peters
    • 2
  • Stefan Hecht
    • 2
  • Martin Wolf
    • 1
  • Petra Tegeder
    • 1
    Email author
  1. 1.Fachbereich PhysikFreie Universität BerlinBerlinGermany
  2. 2.Department of ChemistryHumboldt-Universität BerlinBerlinGermany

Personalised recommendations