Applied Physics A

, Volume 93, Issue 4, pp 987–993 | Cite as

Pulsed laser CVD investigations of single-wall carbon nanotube growth dynamics

  • Z. Liu
  • D. J. Styers-Barnett
  • A. A. Puretzky
  • C. M. Rouleau
  • D. Yuan
  • I. N. Ivanov
  • K. Xiao
  • J. Liu
  • D. B. Geohegan
Article

Abstract

The nucleation and rapid growth of single-wall carbon nanotubes (SWNTs) were explored by pulsed-laser assisted chemical vapor deposition (PLA-CVD). A special high-power, Nd:YAG laser system with tunable pulse width (>0.5 ms) was implemented to rapidly heat (>3×104°C/s) metal catalyst-covered substrates to different growth temperatures for very brief (sub-second) and controlled time periods as measured by in situ optical pyrometry. Utilizing growth directly on transmission electron microscopy grids, exclusively SWNTs were found to grow under rapid heating conditions, with a minimum nucleation time of >0.1 s. By measuring the length of nanotubes grown by single laser pulses, extremely fast growth rates (up to 100 microns/s) were found to result from the rapid heating and cooling induced by the laser treatment. Subsequent laser pulses were found not to incrementally continue the growth of these nanotubes, but instead activate previously inactive catalyst nanoparticles to grow new nanotubes. Localized growth of nanotubes with variable density was demonstrated through this process and was applied for the reliable direct-write synthesis of SWNTs onto pre-patterned, catalyst-covered metal electrodes for the synthesis of SWNT field-effect transistors.

PACS

81.07.De 85.35.Kt 61.48.De 81.16.Mk 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M.S. Dresselhaus, G. Dresselhaus, P.C. Eklund, Science of Fullerence and Carbon Nanotubes (Academic, San Diego, 1996) Google Scholar
  2. 2.
    J.Q. Lu, T.E. Kopley, N. Moll, D. Roitman, D. Chamberlin, Q. Fu, J. Liu, T.P. Russell, D.A. Rider, I. Manners, M.A. Winnik, Chem. Mater. 17(9), 2227 (2005) CrossRefGoogle Scholar
  3. 3.
    J. Gavillet, A. Loiseau, C. Journet, F. Willaime, F. Ducastelle, J.C. Charlier, Phys. Rev. Lett. 87, 275504 (2001) ADSCrossRefGoogle Scholar
  4. 4.
    H. Kanzow, A. Ding, Phys. Rev. B 60, 11180 (1999) ADSCrossRefGoogle Scholar
  5. 5.
    S. Helveg, C. Lopez-Cartes, J. Sehested, P.L. Hansen, B.S. Clausen, J.R. Rostrup-Nielsen, F. Abild-Oedersen, J.K. Norskov, Nature 427, 426 (2004) ADSCrossRefGoogle Scholar
  6. 6.
    M. Lin, J.P.Y. Tan, C. Boothroyd, K.P. Loh, E.S. Tok, Y. Foo, Nano Lett. 6, 449 (2006) ADSCrossRefGoogle Scholar
  7. 7.
    R. Sharma, Z. Iqbal, Appl. Phys. Lett. 84, 990 (2004) ADSCrossRefGoogle Scholar
  8. 8.
    A.A. Puretzky, D.B. Geohegan, X. Fan, S. Pennycook, Appl. Phys. Lett. 76, 182–184 (2000) ADSCrossRefGoogle Scholar
  9. 9.
    D.N. Futaba, K. Hata, T. Yamada, K. Mizuno, M. Yumura, S. Iijima, Phys. Rev. Lett. 95, 056104 (2005) ADSCrossRefGoogle Scholar
  10. 10.
    H. Zhu, K. Suenaga, A. Hashimoto, K. Urita, K. Hata, S. Iijima, Small 1, 1180 (2005) CrossRefGoogle Scholar
  11. 11.
    S. Huang, X. Cai, J. Liu, J. Am. Chem. Soc. 125, 5636–5637 (2003) CrossRefGoogle Scholar
  12. 12.
    Y. Fujiwara, K. Maehashi, Y. Ohno, K. Inoue, K. Matsumoto, Jpn. J. Appl. Phys. 44, 1581 (2005) ADSCrossRefGoogle Scholar
  13. 13.
    S.N. Bondi, W.J. Lackey, R.W. Johnson, X. Wang, Z.L. Wang, Carbon 44, 1393 (2006) CrossRefGoogle Scholar
  14. 14.
    S. Chiashi, M. Kohno, Y. Takata, S. Maruyama, J. Phys. Conf. Ser. 59, 155 (2007) ADSCrossRefGoogle Scholar
  15. 15.
    K. Kaysuya, K. Nagato, Y. Jin, H. Morii, T. Ooi, M. Nakao, Jpn. J. Appl. Phys. 46, L333 (2007) ADSCrossRefGoogle Scholar
  16. 16.
    L.X. Zhang, M.J. O’Connell, S.K. Doorn, X.Z. Liao, Y.H. Zhao, E.A. Akhadov, M.A. Hoffbauer, B.J. Roop, Q.X. Jia, R.C. Dye, D.E. Peterson, S.M. Huang, J. Liu, Y.T. Zhu, Nature Mater. 3, 673 (2004) ADSCrossRefGoogle Scholar
  17. 17.
    A. Jorio, R. Saito, J.H. Hafner, C.M. Lieber, M. Hunter, T. McClure, G. Dresselhaus, M.S. Dresselhaus, Phys. Rev. Lett. 86, 1118 (2001) ADSCrossRefGoogle Scholar
  18. 18.
    A.A. Puretzky, D.B. Geohegan, S. Jesse, I.N. Ivanov, G. Eres, Appl. Phys. A 81, 223 (2005) ADSCrossRefGoogle Scholar
  19. 19.
    R.F. Wood, S. Pannala, J.C. Wells, A.A. Puretzky, D.B. Geohegan, Phys. Rev. B 75, 235446 (2007) ADSCrossRefGoogle Scholar
  20. 20.
    X. Liu, H. Song, C. Zhou, Nano Lett. 6, 34 (2006) ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Z. Liu
    • 1
  • D. J. Styers-Barnett
    • 1
  • A. A. Puretzky
    • 1
    • 2
  • C. M. Rouleau
    • 1
    • 2
  • D. Yuan
    • 3
  • I. N. Ivanov
    • 1
  • K. Xiao
    • 1
  • J. Liu
    • 3
  • D. B. Geohegan
    • 1
    • 2
  1. 1.Center for Nanophase Materials SciencesOak Ridge National LaboratoryOak RidgeUSA
  2. 2.Materials Science and Technology DivisionOak Ridge National LaboratoryOak RidgeUSA
  3. 3.Department of ChemistryDuke UniversityDurhamUSA

Personalised recommendations