Skip to main content
Log in

Nanolithography using high transmission nanoscale ridge aperture probe

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Nanoscale ridge apertures provide a highly confined radiation spot with a high transmission efficiency when used in the near field approach. The radiation confinement and enhancement is due to the electric–magnetic field concentrated in the gap between the ridges. This paper reports the experimental demonstration of radiation enhancement using such antenna apertures and lithography of nanometer size structures. The process utilizes a NSOM (near field scanning optical microscopy) probe with a ridge aperture at the tip, and it combines the nonlinear two photon effect from femtosecond laser irradiation to achieve sub-diffraction limit lithography resolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Aizenberg, J.A. Rogers, K.E. Paul, G.M. Whitesides, Appl. Phys. Lett. 71, 3773 (1997)

    Article  ADS  Google Scholar 

  2. M.M. Alkaisi, R.J. Blaikie, S.J. McNab, R. Cheung, R.S. Cumming, Appl. Phys. Lett. 75, 3560 (1999)

    Article  ADS  Google Scholar 

  3. F. Cacialli, R. Riehnb, A. Downesc, G. Latinic, A. Charasd, J. Morgadod, Ultramicroscopy 100, 449 (2004)

    Article  Google Scholar 

  4. R. Riehn, A. Charas, J. Morgado, F. Cacialli, Appl. Phys. Lett. 82, 526 (2003)

    Article  ADS  Google Scholar 

  5. R. Riehn, F. Cacialli, J. Opt. A: Pure Appl. Opt. 7, 207 (2005)

    Article  ADS  Google Scholar 

  6. S. Maruo, O. Nakamura, Sa. Kawata, Opt. Lett. 22, 132 (1997)

    Article  ADS  Google Scholar 

  7. S.Y. Chou, P.R. Krauss, P.J. Renstrom, Appl. Phys. Lett. 67, 3114 (1995)

    Article  ADS  Google Scholar 

  8. S. Davy, M. Spajer, Appl. Phys. Lett. 69, 3306 (1996)

    Article  ADS  Google Scholar 

  9. S. Kwon, P. Kim, W. Chang, J. Kim, C. Chun, D. Kim, S. Jeong, In: Proceedings of 6th International Symposium on Laser Precision Microfabrication (2005)

  10. A. Tarun, M.R. Daza, N. Hayazawa, Y. Inouye, S. Kawata, Appl. Phys. Lett. 80, 3400 (2002)

    Article  ADS  Google Scholar 

  11. J. Koch, E. Fadeeva, M. Engelbrecht, C. Ruffert, H.H. Gatzen, A. Ostendorf, B.N. Chichkov, Appl. Phys. A 82, 23 (2006)

    Article  ADS  Google Scholar 

  12. W. Chang, J. Kim, S. Cho, K. Whang, Jpn. J. Appl. Phys. 45, 2082 (2006)

    Article  ADS  Google Scholar 

  13. H.A. Bethe, Phys. Rev. 66, 163 (1944)

    Article  ADS  MathSciNet  Google Scholar 

  14. L. Wang, S.M. Uppuluri, E.X. Jin, X. Xu, Nano Lett. 6, 361 (2006)

    Article  ADS  Google Scholar 

  15. A. Sundaramurthy, P.J. Schuck, N.R. Conley, D.P. Fromm, G.S. Kino, W.E. Moerner, Nano Lett. 6, 355 (2006)

    Article  ADS  Google Scholar 

  16. K. Sendur, W. Challener, C. Peng, J. Appl. Phys. 96, 2743 (2004)

    Article  ADS  Google Scholar 

  17. E.X. Jin, X. Xu, Jpn. J. Appl. Phys. 43, 407 (2004)

    Article  ADS  Google Scholar 

  18. E.X. Jin, X. Xu, Appl. Phys. Lett. 86, 111106 (2005)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Murphy-DuBay, N., Wang, L. & Xu, X. Nanolithography using high transmission nanoscale ridge aperture probe. Appl. Phys. A 93, 881–884 (2008). https://doi.org/10.1007/s00339-008-4752-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-008-4752-3

PACS

Navigation