Skip to main content
Log in

Yield improvement for displays’ color filters surface by establishing a precision reclaim-module

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

An effective surface micromachining process for yield improvement was developed using microelectromechanical etching as a precision reclaim-module for indium tin oxide (ITO) thin-film nanostructures from the displays’ color filter surface of thin film transistor liquid crystal displays (TFT-LCDs). The low yield of ITO thin-film deposition is an important factor in optoelectronic semiconductor production. By establishing a recycling process using the ultra-precise removal of thin-film nanostructures, the optoelectronic semiconductor industry can effectively recycle defective products, minimizing both production costs and pollution. For the etching-process, an adequate gap-width between the negative-electrode and the ITO surface, a high flow velocity or a higher working temperature of the electrolyte, results in a higher removal rate for ITO thin-films. Also, adequate feed rate of the workpiece (displays’ color filter) combined with enough electrical power produces a fast removal rate. Pulsed direct current can improve the effect of dregs discharge and is advantageous to associate with the fast feed rate of the workpiece, but it raises the current rating. A smaller edge radius and a small width of the negative-electrode provide a larger discharge space and better etching effect. Microelectromechanical etching requires only a short period of time to remove the ITO thin-film easily and cleanly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Takabatake, J. Ohwada, Y.A. Ono, K. Ono, A. Mimura, N. Konishi, IEEE Trans. Electron Devices 38(6), 1303 (1991)

    Article  ADS  Google Scholar 

  2. T. Shima, T. Itakura, H. Minamizaki, T. Maruyama, in Proc. Int. ISSCC, Kawasaki, Japan, 1997, p. 455, 192

  3. I. Biai, M. Quinteda, L. Mendes et al., Int. J. Thin Solid Films 337, 171 (1999)

    Article  ADS  Google Scholar 

  4. H.C. Kim, B.H. Kwon, M.R. Choi, IEEE Trans. Electron. 47, 6 (2001)

    Google Scholar 

  5. K. Daeil, K. Steven, Int. J. Surf. Coat. Technol. 154, 204 (2002)

    Article  Google Scholar 

  6. J. Wilson, Practice and Theory of Electrochemical Machining (Wiley, New York, 1971)

    Google Scholar 

  7. R.E. Phillips, Carbide Tool J. 18(6), 12 (1986)

    Google Scholar 

  8. A.R. Mileham, S.J. Harrey, K.J. Stout, Wear 109, 207 (1986)

    Article  Google Scholar 

  9. J.A. McGeough, Principles of Electrochemical Machining (Chapman & Hall, London, 1974)

    Google Scholar 

  10. J. Bannard, J. Appl. Electrochem. l7, 267 (1977)

    Article  Google Scholar 

  11. M. Datta, D. Landolt, J. Appl. Electrochem. 13, 795 (1983)

    Article  Google Scholar 

  12. W.M. Shen, M.Sc. thesis, National Yunlin Institute of Technology, Taiwan, 1995

  13. I.A.S. Mansour, G.H. Sedahmed, Surf. Technol. 10(5), 357 (1980)

    Article  Google Scholar 

  14. M. Datta, D. Landolt, Electrochim. Acta 26(7), 899 (1981)

    Article  Google Scholar 

  15. K.R. Rajurkar, Ann. CIRP 44, 177 (1995)

    Article  Google Scholar 

  16. L. Cagnon, V. Kirchner, M. Kock, R. Schuster, G. Ertl, M.W.T. Gmelin, H. Kuck, Z. Phys. Chem. 12(17), 299 (2003)

    Google Scholar 

  17. V.K. Jain, P.G. Yogindra, S. Murugan, Int. J. Mach. Tools Manufact. 27(1), 1135 (1987)

    Article  Google Scholar 

  18. H. Hocheng, P.S. Pa, J. Mater. Process. Technol. 142(1), 203 (2003)

    Article  Google Scholar 

  19. P.S. Pa, J. Mater. Process. Technol. 195(13), 44 (2008)

    Article  Google Scholar 

  20. B.H. Kim, S.H. Ryu, S.H. Choi, C.N. Chu, J. Micromech. Microeng. 15, 124 (2005)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. S. Pa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pa, P.S. Yield improvement for displays’ color filters surface by establishing a precision reclaim-module. Appl. Phys. A 92, 607–614 (2008). https://doi.org/10.1007/s00339-008-4625-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-008-4625-9

PACS

Navigation