Skip to main content
Log in

Sub-wavelength surface structuring of NiTi alloy by femtosecond laser pulses

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Generation of self-organized sub-wavelength surface structures on a nickel–titanium alloy plate by femtosecond laser pulses is investigated experimentally through line-scribing experiments in air. It is found that Bragg-like relief gratings, with the orientation perpendicular to the laser polarization, are formed over the entire laser-scribed regions. The average period is measured as 630±30 nm. Distinctive features of these novel surface structures include nanoparticle-covered grating ridges and the maintainable spatial period regardless of incidence angles. With different laser parameters and sample scan speeds, sub-wavelength grating structures can evolve into cellular-like nanotextures. Optimal conditions for forming these surface structures are determined in terms of laser energy and scan speed. Elementary analyses of the structured surfaces by X-ray diffraction and photoelectron spectroscopy reveal that both the crystal structures and the chemical elements can remain in their original states, but the surface grains are refined and the atomic percentages are varied after femtosecond laser treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Birnbaum, J. Appl. Phys. 36, 3688 (1965)

    Article  ADS  MathSciNet  Google Scholar 

  2. A. Borowiec, H.K. Haugen, Appl. Phys. Lett. 82, 4462 (2003)

    Article  ADS  Google Scholar 

  3. Q.Z. Zhao, S. Malzer, L.J. Wang, Opt. Lett. 32, 1932 (2007)

    Article  ADS  Google Scholar 

  4. Q. Wu, Y. Ma, R. Fang, Y. Liao, Q. Yu, X. Chen, K. Wang, Appl. Phys. Lett. 82, 1703 (2003)

    Article  ADS  Google Scholar 

  5. Y. Shimotsuma, P.G. Kazansky, J. Qiu, K. Hirao, Phys. Rev. Lett. 91, 247405 (2003)

    Article  ADS  Google Scholar 

  6. K. Paivasaari, J. Kaakkunen, M. Kuittinen, T. Jaaskelainen, Opt. Express 15, 13838 (2007)

    Article  ADS  Google Scholar 

  7. G.H. Welsh, N.T. Hunt, K. Wynne, Phys. Rev. Lett. 98, 026803 (2007)

    Article  ADS  Google Scholar 

  8. W.-Q. Han, L. Wu, R.F. Klie, Y. Zhu, Adv. Mater. 19, 2525 (2007)

    Article  Google Scholar 

  9. Y.B. Gerbig, S.I.-U. Ahmed, D.G. Chetwynd, H. Haefke, Tribol. Int. 39, 945 (2006)

    Article  Google Scholar 

  10. T.J. Webster, J.U. Ejiofor, Biomaterials 25, 4731 (2004)

    Article  Google Scholar 

  11. F. Keilmann, Y.H. Bai, Appl. Phys. A 29, 9 (1982)

    Article  ADS  Google Scholar 

  12. J.F. Young, J.S. Preston, H.M. van Driel, J.E. Sipe, Phys. Rev. B 27, 1155 (1983)

    Article  ADS  Google Scholar 

  13. J. Wang, C. Guo, J. Appl. Phys. 100, 023511 (2006)

    Article  ADS  Google Scholar 

  14. F. Korte, J. Serbin, J. Koch, A. Egbert, C. Fallnich, A. Ostendorf, B.N. Chichkov, Appl. Phys. A 77, 229 (2003)

    ADS  Google Scholar 

  15. S. Kawata, H. Sun, T. Tanaka, K. Takada, Nature 412, 697 (2001)

    Article  ADS  Google Scholar 

  16. A.Y. Vorobyev, V.S. Makin, C. Guo, J. Appl. Phys. 101, 034903 (2007)

    Article  ADS  Google Scholar 

  17. R. Harzic, H. Schuck, D. Sauer, T. Anhut, I. Riemann, K. Konig, Opt. Express 13, 6651 (2005)

    Article  ADS  Google Scholar 

  18. R. Wagner, J. Gottmann, A. Horn, E.W. Kreutz, Appl. Surf. Sci. 252, 15 (2006)

    Google Scholar 

  19. R. Wagner, J. Gottmann, J. Phys. Conf. Ser. 59, 333 (2007)

    Article  ADS  Google Scholar 

  20. J. Yang, Y. Zhao, X. Zhu, Appl. Phys. Lett. 88, 094101 (2006)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianjun Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, Y., Yang, J., Liang, C. et al. Sub-wavelength surface structuring of NiTi alloy by femtosecond laser pulses. Appl. Phys. A 92, 635–642 (2008). https://doi.org/10.1007/s00339-008-4594-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-008-4594-z

PACS

Navigation