Skip to main content
Log in

Expansion of a laser plume from a silicon wafer in a wide range of ambient gas pressures

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Expansion of the laser plume from a silicon wafer into surrounding gas is considered in the range of ambient gas pressure from 0.1 to 1 bar using a kinetic approach. The plume is generated by a nanosecond Gaussian laser pulse. Absorption of laser radiation and heating and melting of the target are described by a two-dimensional thermal model. Axisymmetric flow in the laser plume is calculated by the direct simulation Monte Carlo method. It was found that diffusion of mixture components is significant in the considered time scale, flow is non-equilibrium, and regions of high rarefaction temporally appear in the flow. In atmospheric pressure, the re-deposition of the silicon vapor was observed only in the vicinity of the laser spot.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Sibold, H.M. Urbassek, J. Appl. Phys. 73, 8544–8551 (1993)

    Article  ADS  Google Scholar 

  2. N.Y. Bykov, G.A. Loukianov, Thermophys. Aeromech. 10, 401–410 (2003)

    Google Scholar 

  3. A.V. Gusarov, I. Smurov, J. Phys. D: Appl. Phys. 36, 2962–2971 (2003)

    Article  ADS  Google Scholar 

  4. Z. Chen, A. Bogaerts, J. Appl. Phys. 97, 063305 (2005)

    Article  ADS  Google Scholar 

  5. T.E. Itina, J. Hermann, P. Delaporte, M. Sentis, Phys. Rev. E 66, 066406 (2002)

    Article  ADS  Google Scholar 

  6. A.A. Samarskui, P.N. Vabischevich, Computational Heat Transfer (Editorial URRS, Moscow, 2003) (in Russian)

    Google Scholar 

  7. C. Cercignany, Rarefied Gas Dynamics: From Basic Concepts to Actual Applications (Cambridge University Press, Cambridge, 2000)

    Google Scholar 

  8. G.A. Bird, Molecular Gas Dynamics and the Direct Simulation of Gas Flows (Clarendon Press, Oxford, 1994)

    Google Scholar 

  9. C.A.J. Fletcher, Computational Techniques for Fluid Dynamics (Springer, Berlin, 1991–1992)

    Google Scholar 

  10. A.N. Volkov, Matematicheskoe Modelirovanie 17(8), 5–14 (2005) (in Russian)

    MATH  Google Scholar 

  11. I.K. Kikoin (ed.), Tables of Physical Magnitudes, Handbook (Atomizdat, Moscow, 1976) (in Russian)

    Google Scholar 

  12. D. Bauerle, Laser Processing and Chemistry (Springer, Berlin, 2000)

    Google Scholar 

  13. P.D. Desai, J. Phys. Chem. Ref. Data 15, 967–983 (1986)

    Article  ADS  Google Scholar 

  14. J.H. Yoo, S.H. Jeong, R. Greif, R.E. Russo, J. Appl. Phys. 88, 1638–1649 (2000)

    Article  ADS  Google Scholar 

  15. N. Honda, Y. Nagasaka, Int. J. Thermophys. 20, 837–846 (1999)

    Article  Google Scholar 

  16. L.I. Sedov, Similarity and Dimensional Methods in Mechanics (CRC Press, Boca Raton, 1993)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexey N. Volkov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Volkov, A.N., O’Connor, G.M., Glynn, T.J. et al. Expansion of a laser plume from a silicon wafer in a wide range of ambient gas pressures. Appl. Phys. A 92, 927–932 (2008). https://doi.org/10.1007/s00339-008-4587-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-008-4587-y

PACS

Navigation