Skip to main content
Log in

Influence of photoexcitation pathways on the initiation of ablation in poly (methyl methacrylate)

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Experimental and theoretical studies of laser ablation of polymers, under various processing conditions, have identified many possible photoexcitation pathways and consequently many likely processes responsible for the onset of ablation. We investigate the role of these processes—namely the thermal, mechanical and chemical processes—occurring in a polymeric substrate during UV irradiation. Molecular dynamics simulations with an embedded Monte Carlo-based reaction scheme were used to study ablation of Poly (methyl methacrylate) at 157 nm. Laser-induced heating and chemical decomposition of the polymeric substrate are considered as ablation pathways. For the heating case, the mechanism of ejection is thermally driven limited by the critical number of bonds broken. This fragmentation process is well reproduced by the existing bulk photothermal ablation model. Alternatively, if the photon energy goes toward direct bond breaking, it initiates chemical reactions, polymer unzipping, and formation of gaseous products leading to near complete decomposition, loss of strength and cohesiveness of the top layers of the polymeric substrate. The ejection of small gaseous molecules weakens and hollows out the substrate, facilitating liftoff of larger fragments of material. These larger clusters are thermally ejected and the photochemical ablation process can be described by the two-step model proposed by Kalontarov.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Hillenkamp, M. Karas, Int. J. Mass Spectrom. 200, 71 (2000)

    Article  Google Scholar 

  2. R.E. Johnson, in Large Ions: Their Vaporization, Detection and Structural Analysis, ed. by T. Baer, C.Y. Ng, I. Powis (Wiley, New York, 1996), p. 49

    Google Scholar 

  3. N.H. Niemz, Laser Tissue Interactions: Fundamentals and Applications (Springer, Berlin, 2002)

    Google Scholar 

  4. P.E. Dyer, Appl. Phys. A 77, 167 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  5. D. Bäuerle, Laser Processing and Chemistry (Springer, Berlin, 2000)

    Google Scholar 

  6. A. Bogaerts, Z. Chen, R. Gijbels, A. Vertes, Spectrochim. Acta Part B At. Spectrosc. 58, 1867 (2003)

    Article  ADS  Google Scholar 

  7. R. Srinivasan, B. Braren, D.E. Seeger, R.W. Dreyfus, Macromolecules 19, 916 (1986)

    Article  Google Scholar 

  8. D.J. Krajnovich, J. Phys. Chem. A 101, 2033 (1997)

    Article  Google Scholar 

  9. T. Efthimiopoulos, C. Kiagias, G. Heliotis, E. Helidonis, Can. J. Phys. 78, 509 (2000)

    Article  ADS  Google Scholar 

  10. M. Tsunekawa, S. Nishio, H. Sato, J. Appl. Phys. 76, 5598 (1994)

    Article  ADS  Google Scholar 

  11. T. Lippert, Plasma Process. Polym. 2, 525 (2005)

    Article  Google Scholar 

  12. S. Kuper, S. Modaressi, M. Stuke, J. Phys. Chem. 94, 7514 (1990)

    Article  Google Scholar 

  13. M.B. Christiansen, M. Scholer, S. Balslev, R.B. Nielsen, D.H. Petersen, A. Kristensen, J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. 24, 3252 (2006)

    Article  Google Scholar 

  14. N. Bityurin, B.S. Luk’yanchuk, M.H. Hong, T.C. Chong, Chem. Rev. 103, 519 (2003)

    Article  Google Scholar 

  15. H. Schmidt, J. Ihlemann, B. Wolff-Rottke, K. Luther, J. Troe, J. Appl. Phys. 83, 5458 (1998)

    Article  ADS  Google Scholar 

  16. N. Arnold, N. Bityurin, D. Bauerle, Appl. Surf. Sci. 138–139, 212 (1999)

    Article  Google Scholar 

  17. N. Bityurin, A. Malyshev, J. Appl. Phys. 92, 605 (2002)

    Article  ADS  Google Scholar 

  18. R. Srinivasan, B. Braren, Chem. Rev. 89, 1303 (1989)

    Article  Google Scholar 

  19. S. Kuper, M. Stuke, Appl. Phys. Mater. Sci. Process. 49, 211 (1989)

    Article  ADS  Google Scholar 

  20. B. Danielzik, N. Fabricius, M. Rowekamp, D.V.D. Linde, Appl. Phys. Lett. 48, 212 (1986)

    Article  ADS  Google Scholar 

  21. R.C. Estler, N.S. Nogar, Appl. Phys. Lett. 49, 1175 (1986)

    Article  ADS  Google Scholar 

  22. P.E. Dyer, R. Srinivasan, J. Appl. Phys. 66, 2608 (1989)

    Article  ADS  Google Scholar 

  23. T. Lippert, R.L. Webb, S.C. Langford, J.T. Dickinson, J. Appl. Phys. 85, 1838 (1999)

    Article  ADS  Google Scholar 

  24. L.V. Zhigilei, P.B.S. Kodali, B.J. Garrison, J. Phys. Chem. B 101, 2028 (1997)

    Article  Google Scholar 

  25. L.V. Zhigilei, B.J. Garrison, J. Appl. Phys. 88, 1281 (2000)

    Article  ADS  Google Scholar 

  26. Y.G. Yingling, L.V. Zhigilei, B.J. Garrison, J. Photochem. Photobiol. A 145, 173 (2001)

    Article  Google Scholar 

  27. L.V. Zhigilei, E. Leveugle, B.J. Garrison, Y.G. Yingling, M.I. Zeifman, Chem. Rev. 103, 321 (2003)

    Article  Google Scholar 

  28. Y.G. Yingling, B.J. Garrison, J. Phys. Chem. B 109, 16482 (2005)

    Article  Google Scholar 

  29. M. Prasad, P.F. Conforti, B.J. Garrison, J. Chem. Phys. 127, 084705 (2007)

    Article  ADS  Google Scholar 

  30. L.V. Zhigilei, B.J. Garrison, Mater. Res. Soc. Symp. Proc. 538, 491 (1999)

    Google Scholar 

  31. A. Gupta, R. Liang, F.D. Tsay, J. Moacanin, Macromolecules 13, 1696 (1980)

    Article  Google Scholar 

  32. T.H. Fedynyshyn, R.R. Kunz, R.F. Sinta, R.B. Goodman, S.P. Doran, J. Vac. Sci. Technol. B 18, 3332 (2000)

    Article  Google Scholar 

  33. M. Prasad, P.F. Conforti, B.J. Garrison, J. Appl. Phys. 101, 103113 (2007)

    Article  ADS  Google Scholar 

  34. M. Prasad, P.F. Conforti, B.J. Garrison, Y.G. Yingling, Appl. Surf. Sci. 253, 6382 (2007)

    Article  ADS  Google Scholar 

  35. P.F. Conforti, M. Prasad, B.J. Garrison, J. Phys. Chem. C 111, 12024 (2007)

    Article  Google Scholar 

  36. P.F. Conforti, M. Prasad, B.J. Garrison, Appl. Surf. Sci. 253, 6386 (2007)

    Article  ADS  Google Scholar 

  37. L.I. Kalontarov, R. Marupov, Chem. Phys. Lett. 196, 15 (1992)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barbara J. Garrison.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prasad, M., Conforti, P.F. & Garrison, B.J. Influence of photoexcitation pathways on the initiation of ablation in poly (methyl methacrylate). Appl. Phys. A 92, 877–881 (2008). https://doi.org/10.1007/s00339-008-4570-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-008-4570-7

PACS

Navigation