Skip to main content
Log in

Growth of normally-immiscible materials (NIMs), binary alloys, and metallic fibers by hyperbaric laser chemical vapor deposition

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

This work demonstrates that two or more elements of negligible solubility (and no known phase diagram) can be co-deposited in fiber form by hyperbaric-pressure laser chemical vapor deposition (HP-LCVD). For the first time, Hg-W alloys were grown as fibers from mixtures of tungsten hexafluoride, mercury vapor, and hydrogen. This new class of materials is termed normally-immiscible materials (NIMs), and includes not only immiscible materials, but also those elemental combinations that have liquid states at exclusive temperatures. This work also demonstrates that a wide variety of other binary and ternary alloys, intermetallics, and mixtures can be grown as fibers, e.g. silicon-tungsten, aluminum-silicon, boron-carbon-silicon, and titanium-carbon-nitride. In addition, pure metallic fibers of aluminum, titanium, and tungsten were deposited, demonstrating that materials of high thermal conductivity can indeed be grown in three-dimensions, provided sufficient vapor pressures are employed. A wide variety of fiber properties and microstructures resulted depending on process conditions; for example, single crystals, fine-grained alloys, and glassy metals could be deposited.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Duwez, R.H. Willens, W. Klement Jr., J. Appl. Phys. 31, 1136 (1960)

    Article  ADS  Google Scholar 

  2. S.A. Inoue, A. Takeuchi, Mater. Trans. 43, 1892 (2002)

    Article  Google Scholar 

  3. L. Wang, Y. Zhang, H. Yang, Y. Chen, Phys. Lett. A 317, 489 (2003)

    Article  ADS  Google Scholar 

  4. A. Munitz, R. Abbaschian, J. Mater. Sci. 26, 6458 (1991)

    Article  Google Scholar 

  5. C.D. Cao, W.J. Xie, B. Wei, Mater. Sci. Eng. A 283, 86 (2000)

    Article  Google Scholar 

  6. S.A. Inoue, T. Zhang, T. Masumoto, Mater. Trans. 30, 965 (1989)

    Google Scholar 

  7. A.J. Horlock, Z. Sadeghian, D.G. McCartney, P.H. Shipway, J. Thermal Spray Technol. 14, 77 (2005)

    Google Scholar 

  8. R. Gowami, H. Herman, S. Smapth, J.B. Parise, Y. Zhu, D.J. Welch, J. Am. Ceram. Soc. 85, 2437 (2002)

    Article  Google Scholar 

  9. H.S. Chen, D. Turnbull, Acta Metalurgica 17, 1021 (1969)

    Google Scholar 

  10. H. Westberg, M. Boman, J.O. Carlsson, J. Phys. IV 3, 225 (1993)

    Article  Google Scholar 

  11. F.T. Wallenberger, P.C. Nordine, Science 260, 66 (1993)

    Article  ADS  Google Scholar 

  12. M. Stuke, K. Mueller, T. Mueller, R. Hagedorn, M. Jaeger, G. Fuhr, Appl. Phys. A 81, 915 (2005)

    Article  ADS  Google Scholar 

  13. J.L. Maxwell, M. Boman, R.W. Springer, A. Nobile, K. DeFriend, L. Espada, M. Sandstrom, D. Kommireddy, J. Pegna, D. Goodin, Adv. Funct. Mater. 15, 1077 (2005)

    Article  Google Scholar 

  14. D.N. McIIroy, D. Zhang, Y. Kranov, M.G. Norton, Appl. Phys. Lett. 79, 1540 (2001)

    Article  ADS  Google Scholar 

  15. R.S. Wagner, W.C. Ellis, Appl. Phys. Lett. 4, 89 (1964)

    Article  ADS  Google Scholar 

  16. C.A. Huber, T.E. Huber, M. Sadoqi, J.A. Lubin, S. Manalis, C.B. Prater, Science 263, 800 (1994)

    Article  ADS  Google Scholar 

  17. Z. Zhang, J.Y. Ying, M.S. Dresselhaus, J. Mater. Res. 13, 1745 (1998)

    Article  ADS  Google Scholar 

  18. Y. Rytz-Froidevaux, R.P. Salathé, H.H. Gilgen, Phys. Lett. A 84, 216 (1981)

    Article  ADS  Google Scholar 

  19. O. Lehmann, M. Stuke, Mater. Lett. 21, 131 (1994)

    Article  Google Scholar 

  20. P.B. Comita, T.T. Kodas, J. Appl. Phys. 62, 2280 (1987)

    Article  ADS  Google Scholar 

  21. W. Kräuter, D. Bäuerle, F. Fimberger, Appl. Phys. A 31, 13 (1983)

    Article  ADS  Google Scholar 

  22. S.D. Allen, A.B. Tringubo, J. Appl. Phys. 54, 1641 (1983)

    Article  ADS  Google Scholar 

  23. H. Westberg, M. Boman, S. Johansson, J.-A. Schweitz, J. Appl. Phys. 73, 7864 (1993)

    Article  ADS  Google Scholar 

  24. C. Arnone, M. Rothschild, J.G. Black, D.J. Ehrlich, Appl. Phys. Lett. 48, 1018 (1986)

    Article  ADS  Google Scholar 

  25. J.L. Maxwell, J. Pegna, D.A. DeAngelis, D.V. Messia, Mater. Res. Soc. Symp. Proc. 397, 601 (1995)

    Google Scholar 

  26. F.T. Wallenberger, P.C. Nordine, Mater. Lett. 14, 198 (1992)

    Article  Google Scholar 

  27. M. Boman, H. Westberg, S. Johansson, J. Schweitz, IEEE Micro Electro Mechanical Systems Workshop, Travemuende, Germany (1992), pp. 162–167

  28. K. Williams, J.L. Maxwell, K. Larsson, M. Boman, IEEE Micro Electro Mechanical Systems Workshop (1999), pp. 232–237

  29. M.C. Wanke, O. Lehmann, K. Muller, Q. Wen, M. Stuke, Science 275, 1284 (1997)

    Article  Google Scholar 

  30. S. Johansson, J.-A. Schweitz, H. Westberg, M. Boman, J. Appl. Phys. 72, 5956 (1992)

    Article  ADS  Google Scholar 

  31. H. Westbeg, M. Boman, S. Johansson, J. Schweitz, 1991 Inter. Conf. on Solid-State Sensors and Actuators (Transducers ’91) (1991), pp. 516–519

  32. J.L. Maxwell, C.A. Chavez, R.W. Springer, K.R. Maskaly, D. Goodin, Diam. Relat. Mater. 16, 1557 (2007)

    Article  Google Scholar 

  33. O. Lehmann, M. Stuke, Mater. Lett. 21, 131 (1994)

    Article  Google Scholar 

  34. T.H. Baum, C.E. Larson, High Temp. Sci. 27, 237 (1990)

    Google Scholar 

  35. J.L. Maxwell, M. Boman, R.W. Springer, J. Narayan, S. Gnanavelu, J. Am. Chem. Soc. 128, 4405 (2006)

    Article  Google Scholar 

  36. J. Bloch, Y. Zeiri, R.R. Lucchese, Surf. Sci. 257, 402 (1991)

    Article  ADS  Google Scholar 

  37. F.T. Wallenberger, P.C. Nordine, J. Mater. Res. 9, 527 (1994)

    Article  ADS  Google Scholar 

  38. J.L. Maxwell, Ph.D. Thesis, Rensselauer Polytechnic Institute, Troy, NY (1996), pp. 112–115

  39. D. Bäuerle, E. Arenholz, N. Arnold, J. Heitz, P.B. Kargl, Adv. Laser Proc. of Mater.: Fund. and Appl., MRS Proc. (1995), pp. 573–580

  40. Ekvicalc v.3.2 Software, BeN Systems, Örnsätra, S-74022, Bälinge, Sweden

  41. F. Cuevas, J.F. Fernandez, C. Sanchez, Mater. Sci. Eng. B 54, 141 (1998)

    Article  Google Scholar 

  42. F. Teyssandier, M.D. Allendorf, J. Electrochem. Soc. 145, 2167 (1998)

    Article  Google Scholar 

  43. J.L. Maxwell, Ph.D. Thesis, Rensselauer Polytechnic Institute, Troy, NY (1996), pp. 222–226

  44. J.L. Maxwell, C. Chavez, M. Espinoza, M. Black, Three-dimensional Growth of Functional Microelectronic Materials by HP-LCVD, to be published

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J.L. Maxwell.

Additional information

PACS

81.15.Fg; 81.05.Bx; 81.05.Je; 81.15.Gh

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maxwell, J., Black, M., Chavez, C. et al. Growth of normally-immiscible materials (NIMs), binary alloys, and metallic fibers by hyperbaric laser chemical vapor deposition. Appl. Phys. A 91, 507–514 (2008). https://doi.org/10.1007/s00339-008-4440-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-008-4440-3

Keywords

Navigation