Skip to main content
Log in

Morphology and temperature-dependent electron field emission from vertically aligned carbon nanofibers

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Effects of temperature and the aspect ratio on the electron field emission properties of vertically aligned carbon nanofibers in thin-film form were studied in detail. Vertically aligned carbon nanofibers have been synthesized on silicon substrates via a direct current plasma enhanced chemical vapor deposition technique. Surface morphologies of the films were studied by an atomic force microscope. It was found that the length of the nanofibers increased and the diameter decreased as the thickness of the Ni catalyst film decreased. The threshold field for the electron field emission was found to be in the range from 4.3 to 5.4 V/μm for carbon nanofibers having different aspect ratios. The threshold field for carbon nanofibers having diameter ∼ 200 nm and aspect ratio ∼7.5 was found to decrease from 4.8 to 2.1 V/μm when the temperature was raised from 27 to 350 °C. This dependence was due to the change in work function of the nanofibers with temperature. The field enhancement factor, the current density and the effective work function were calculated and used to explain the emission mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Schutzenberger, L. Schutzenberger, CR Acad. Sci. Paris 111, 774 (1890)

    Google Scholar 

  2. C. Pelabon, H. Pelabon, CR Acad. Sci. Paris 137, 706 (1903)

    Google Scholar 

  3. S. Iijima, Nature 354, 56 (1991)

    Article  ADS  Google Scholar 

  4. S. Iijima, T. Ichihashi, Nature 363, 603 (1993)

    Article  ADS  Google Scholar 

  5. D.S. Bethune, C.H. Clang, M.S.D. Vries, G. Gorman, R. Savoy, J. Vazquez, R. Beyers, Nature 363, 605 (1993)

    Article  ADS  Google Scholar 

  6. G. Che, B.B. Lakshmi, C.R. Martin, E.R. Fisher, R.S. Ruoff, Chem. Mater. 10, 260 (1998)

    Article  Google Scholar 

  7. Y. Matsumoto, M.T. Oo, M. Nakao, K. Kamimura, Y. Onuma, H. Matsushima, Mater. Sci. Eng. B 74, 218 (2000)

    Article  Google Scholar 

  8. S. Honda, K.Y. Lee, K. Fujimoto, K. Tsuji, S. Ohkura, M. Katayama, T. Hirao, K. Oura, Physica B 323, 347 (2002)

    Article  ADS  Google Scholar 

  9. T. Guo, P. Nikolaev, A. Thess, D.T. Colbert, R.E. Smalley, Chem. Phys. Lett. 203, 49 (1995)

    Article  Google Scholar 

  10. T. Ikuno, J.T. Ryu, T. Oyama, S. Ohkura, Y.G. Baek, S. Honda, M. Katayama, T. Hirao, K. Oura, Vacuum 66, 341 (2002)

    Article  Google Scholar 

  11. Z.F. Ren, Z.P. Huang, J.W. Xu, J.H. Wang, P. Bush, M.P. Siegal, P.N. Provencio, Science 282, 1105 (1998)

    Article  ADS  Google Scholar 

  12. S.Y. Chen, J.T. Lue, Phys. Lett. A 309, 114 (2003)

    Article  ADS  Google Scholar 

  13. W.A.D. Heer, A. Chatelain, D. Ugarte, Science 270, 1179 (1995)

    Article  ADS  Google Scholar 

  14. M. Mauger, V.T. Binh, A. Levesque, D. Guillot, Appl. Phys. Lett. 85, 305 (2004)

    Article  ADS  Google Scholar 

  15. Q.H. Wang, M. Yan, R.P.H. Chang, Appl. Phys. Lett. 78, 1294 (2001)

    Article  ADS  Google Scholar 

  16. A.G. Rinzler, J.H. Hafner, P. Nikolaev, L. Lou, S.G. Kim, D. Tomanek, P. Nordlander, D.T. Colbert, R.E. Smalley, Science 269, 1550 (1995)

    Article  ADS  Google Scholar 

  17. G.Z. Yue, Q. Qiu, B. Gao, Y. Cheng, J. Zhang, H. Shimoda, J.P. Lu, O. Zhou, Appl. Phys. Lett. 81, 355 (2002)

    Article  ADS  Google Scholar 

  18. A. Haga, S. Senda, Y. Sakai, Y. Mizuta, S. Kita, F. Okuyama, Appl. Phys. Lett. 84, 2208 (2004)

    Article  ADS  Google Scholar 

  19. Y. Saito, K. Hata, A. Takakura, J. Yotani, S. Uemura, Physica B 323, 30 (2002)

    Article  ADS  Google Scholar 

  20. D.S. Chung, S.H. Park, H.W. Lee, J.H. Choi, S.N. Cha, J.W. Kim, J.E. Jang, K.W. Min, S.H. Cho, M.J. Yoon, J.S. Lee, C.K. Lee, J.H. Yoo, J.M. Kim, J.E. Jung, Y.W. Jin, Y.J. Park, J.B. You, Appl. Phys. Lett. 80, 4045 (2002)

    Article  ADS  Google Scholar 

  21. M.S. Jung, Y.K. Ko, D.H. Jung, D.H. Choi, H.T. Jung, J.N. Heo, B.H. Sohn, Y.W. Jin, J. Kim, Appl. Phys. Lett. 87, 13114 (2005)

    Article  ADS  Google Scholar 

  22. A.Y. Cao, X.F. Zhang, X. Xiao, M.Q. Ding, D.M. Zhuang, C.L. Xu, B.Q. Wei, J. Liang, D.H. Wu, Mater. Lett. 51, 371 (2001)

    Article  Google Scholar 

  23. Y.C. Chen, H.F. Cheng, Y.S. Hsieh, Y.M. Tsau, J. Appl. Phys. 94, 7739 (2003)

    Article  ADS  Google Scholar 

  24. C.M. Tan, J. Jia, W. Yu, Appl. Phys. Lett. 86, 263104 (2005)

    Article  ADS  Google Scholar 

  25. S. Gupta, Y.Y. Wang, J.M. Garguilo, R.J. Nemanich, Appl. Phys. Lett. 86, 63109 (2005)

    Article  Google Scholar 

  26. Y.Y. Wei, G. Eres, V.I. Merkulov, D.H. Lowndes, Appl. Phys. Lett. 78, 1394 (2001)

    Article  ADS  Google Scholar 

  27. S.F. Ahmed, M.K. Mitra, K.K. Chattopadhyay, Appl. Surf. Sci. 253, 5480 (2007)

    Article  ADS  Google Scholar 

  28. W. Zhu, Vacuum Microelectronics (Wiley, New York, 2001), p. 163

    Google Scholar 

  29. T.K. Tsai, C.G. Chao, W.L. Liu, Diam. Relat. Mater. 12, 1453 (2003)

    Article  Google Scholar 

  30. A. Modinos, Field, Thermionic, and Secondary Electron Emission Spectroscopy (Plenum, New York, 1984), p. 167

    Google Scholar 

  31. M. Shiraishi, M. Ata, Carbon 39, 1913 (2001)

    Article  Google Scholar 

  32. M.C. Kan, J.L. Huang, J.C. Sung, K.H. Chen, B.S. Yau, Carbon 41, 2829 (2003)

    Article  Google Scholar 

  33. M.J. Fransen, T.L.V. Rooy, P. Kruit, Appl. Surf. Sci. 146, 312 (1999)

    Article  ADS  Google Scholar 

  34. L. Xinghui, Z. Changchun, L. Weihua, Z. Fanguang, T. Changhui, Mater. Chem. Phys. 93, 473 (2005)

    Article  Google Scholar 

  35. C. Wang, A. Garcia, D.C. Ingram, M. Lake, M.E. Kordesch, Electron. Lett. 27, 1459 (1991)

    Article  ADS  Google Scholar 

  36. N.S. Xu, R.V. Latham, Y. Tzeng, Electron. Lett. 29, 1596 (1993)

    Article  Google Scholar 

  37. Y. Chen, D.T. Shaw, L. Guo, Appl. Phys. Lett. 76, 2469 (2000)

    Article  ADS  Google Scholar 

  38. A.N. Obraztsov, I.Y. Pavlovsky, A.P. Volkov, A.S. Petrov, V.I. Petrov, E.V. Rakova, V.V. Roddatis, Diam. Relat. Mater. 8, 814 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K.K. Chattopadhyay.

Additional information

PACS

81.07.De; 61.10.-i; 79.70.+q; 73.30.+y

Rights and permissions

Reprints and permissions

About this article

Cite this article

Das, S., Ahmed, S., Mitra, M. et al. Morphology and temperature-dependent electron field emission from vertically aligned carbon nanofibers. Appl. Phys. A 91, 429–433 (2008). https://doi.org/10.1007/s00339-008-4418-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-008-4418-1

Keywords

Navigation