Skip to main content
Log in

Structural and compositional analyses of nanocrystalline diamond/β-SiC composite films

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Nanocrystalline diamond/β-SiC composite films are synthesized by microwave plasma chemical vapor deposition using a gas mixture of H2, CH4, and tetramethylsilane (Si(CH3)4, TMS) in a single process step. Structural and compositional analyses revealed that the films consist of a mixture of diamond and β-SiC nanocrystalline phases in a desired volume fraction combinatorial form. Transmission electron microscopy analysis confirmed the X-ray diffraction results and showed that the major diffraction lines corresponded to a two-component nanocrystalline composite film. Infrared spectroscopic analysis showed that the content of β-SiC in the films can be increased by increasing the TMS concentration. This correlated very well with electron probe microanalysis and Rutherford backscattering analysis that showed an almost linear correspondence of β-SiC content in the films with the TMS concentration in the gas phase. The phase purity of the diamond crystallites decreased with increase in the β-SiC content in the films, as shown by micro Raman scattering studies. Smooth surface morphologies are measured for these films by using atomic force microscopy; the root mean square roughness was 12 ± 1 nm. The β-SiC volume fraction (vol. %) was identified as an important compositional factor to determine any mechanical and frictional properties of these films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Nesladek, C. Asinari, J. Spinnewyn, Diam. Relat. Mater. 2, 7 (1994)

    Google Scholar 

  2. H.P. Lorenz, Diam. Relat. Mater. 4, 1088 (1995)

    Article  Google Scholar 

  3. Q.H. Fan, A. Fernandes, E. Pereira, J. Gracio, Diam. Relat. Mater. 8, 1549 (1999)

    Article  Google Scholar 

  4. L. Schaefer, M. Fryda, T. Stolley, L. Xiang, C.-P. Klages, Surf. Coat. Technol. 116, 447 (1999)

    Article  Google Scholar 

  5. M.C.A. Nono, E.J. Corat, M. Ueda, Surf. Coat. Technol. 112, 295 (1999)

    Article  Google Scholar 

  6. C.-P. Klages, M. Fryda, T. Matthee, L. Schaefer, H. Dimigen, Refract. Met. Hard Mater. 16, 171 (1998)

    Google Scholar 

  7. L.F. Albright, T.C. Tasi, Physics: Theory and Industrial Practice (Academic, New York, 1983), Chap. 10, pp. 233–254

  8. I.Y. Konyashin, M.B. Guseva, Diam. Relat. Mater. 5, 575 (1996)

    Article  Google Scholar 

  9. O. Glozman, A. Hoffman, Diam. Relat. Mater. 6, 796 (1997)

    Article  Google Scholar 

  10. X. Jiang, C.-P. Klages, Appl. Phys. Lett. 61, 1629 (1992)

    Article  ADS  Google Scholar 

  11. Y.L. Shi, M.H. Tan, X. Jiang, J. Mater. Res. 17, 1241 (2002)

    Article  ADS  Google Scholar 

  12. D. Wittorf, W. Jäger, K. Urban, T. Gutheit, H. Gütler, G. Schulz, R. Zachai, Diam. Relat. Mater. 6, 649 (1997)

    Article  Google Scholar 

  13. D.P. Monagham, D.G. Teer, P.A. Logan, I. Efleoglu, R.D. Arnell, Surf. Coat. Technol. 60, 525 (1993)

    Article  Google Scholar 

  14. A.K. Gangopadhyay, M.A. Tamor, Wear 169, 221 (1993)

    Article  Google Scholar 

  15. D.G. Bhat, D.G. Johnson, A.P. Malshe, H. Naseem, W.D. Brown, L.W. Schaper, C.-H. Shen, Diam. Relat. Mater. 4, 921 (1995)

    Article  Google Scholar 

  16. S. Yugo, T. Kanai, T. Kimura, T. Muto, Appl. Phys. Lett. 58, 1036 (1991)

    Article  ADS  Google Scholar 

  17. X. Jiang, K. Schiffmann, C.-P. Klages, Phys. Rev. B 50, 8402 (1994)

    Article  ADS  Google Scholar 

  18. B.R. Stoner, G. Ma, S.D. Wolter, J.T. Glass, Phys. Rev. B 45, 11067 (1992)

    Article  ADS  Google Scholar 

  19. W. Yarbrough, R. Messier, Science 247, 688 (1990)

    Article  ADS  Google Scholar 

  20. J. Lee, R.W. Collins, R. Messier, Y.E. Strausser, Appl. Phys. Lett. 70, 1527 (1997)

    Article  ADS  Google Scholar 

  21. L.C. Nistor, J.V. Landuyt, V.G. Ralchenko, E.D. Obraztsova, A.A. Smolin, Diam. Relat. Mater. 6, 159 (1997)

    Article  Google Scholar 

  22. A.C. Ferrari, J. Robertson, Phys. Rev. 63, 121405 (2001)

    Article  ADS  Google Scholar 

  23. N. Wada, S.A. Solin, Physica B+C 105B, 353 (1981)

    Article  ADS  Google Scholar 

  24. Y. Sasaki, Y. Nishina, M. Sato, K. Okamura, J. Mater. Sci. 22, 443 (1987)

    Article  ADS  Google Scholar 

  25. Y. Avigal, M. Schieber, R. Levin, J. Cryst. Growth 2425, 188 (1974)

    Google Scholar 

  26. V.V.S.S. Srikanth, M.H. Tan, X. Jiang, Appl. Phys. Lett. 88, 073109 (2006)

    Article  ADS  Google Scholar 

  27. A.V. Sumant, A.R. Krauss, D.M. Gruen, O. Auciello, A. Erdemir, M. Williams, A.F. Artiles, W. Adams, Tribol. Trans. 48, 24 (2005)

    Google Scholar 

  28. H. Windischmann, G.F. Epps, Y. Cong, R.W. Collins, J. Appl. Phys. 69, 2231 (1991)

    Article  ADS  Google Scholar 

  29. V.G. Ralchenko, A.A. Smolin, V.G. Pereverzev, E.D. Obraztsova, K.G. Korotoushenko, V.I. Konov, Y.V. Lakhotkin, E.N. Loubnin, Diam. Relat. Mater. 4, 754 (1995)

    Article  Google Scholar 

  30. T. Staedler, V.V.S.S. Srikanth, X. Jiang, Mater. Res. Soc. Symp. Proc. 890, 0890-Y01-04 (2006)

    Google Scholar 

  31. V.V.S.S. Srikanth, H. Abu Samra, T. Staedler, X. Jiang, Surf. Coat. Technol. 201, 8981 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. Jiang.

Additional information

PACS

68.55.-a; 68.55.Nq; 68.60.-p

Rights and permissions

Reprints and permissions

About this article

Cite this article

Srikanth, V., Staedler, T. & Jiang, X. Structural and compositional analyses of nanocrystalline diamond/β-SiC composite films. Appl. Phys. A 91, 149–155 (2008). https://doi.org/10.1007/s00339-007-4388-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-007-4388-8

Keywords

Navigation