Skip to main content
Log in

Laser-generated thermoelastic acoustic sources and Lamb waves in anisotropic plates

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The effect of anisotropy and temperature on the dispersive Lamb wave generation and propagation in a transversely isotropic thin plate has been investigated. A quantitative numerical model for the laser-generated transient ultrasonic Lamb waves propagating along arbitrary directions is presented by using a finite-element method. All factors, such as spatial and time distributions of the incident laser beam, optical penetration, thermal diffusivity, thickness of the plate, and source–receiver distance, can be taken into account. The effects on the ultrasound waveform of the size of the optoacoustic source are investigated; in the limit of strong optical absorption, a subsurface thermal source gives rise to both vertical and lateral shear tensions. The lateral shear tension is equivalent to applying a shear dipole at the top face; the amplitude of the dipole is a function of material symmetry, contrary to the isotropic case, and the character and strength of the equivalent surface stress are a function of propagation direction. The specific results for the lower anti-symmetric and symmetric mode propagation in all planar directions are presented in the thermoelastic regime; the spatial dispersion (variation of the velocity with the direction of propagation) as well as the frequency dispersion is analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.B. Scruby, R.J. Dewhurst, D.A. Hutchins, S.B. Palmer, J. Appl. Phys. 51, 6210 (1980)

    Article  ADS  Google Scholar 

  2. J.C. Cheng, S.Y. Zhang, Appl. Phys. Lett. 74, 2087 (1999)

    Article  ADS  Google Scholar 

  3. M. Dubois, F. Enguehard, L. Bertrand, M. Choquet, J.-P. Monchalin, Appl. Phys. Lett. 64, 554 (1994)

    Article  ADS  Google Scholar 

  4. L.R.F. Rose, J. Acoust. Soc. Am. 75, 723 (1984)

    Article  MATH  ADS  Google Scholar 

  5. P.A. Doyle, J. Phys. D Appl. Phys. 19, 1613 (1986)

    Article  ADS  Google Scholar 

  6. C.B. Scruby, R.J. Dewhurst, D.A. Hutchins, S.B. Palmer, J. Acoust. Soc. Am. 51, 6210 (1980)

    Google Scholar 

  7. K. Telschow, R. Conant, J. Acoust. Soc. Am. 88, 1494 (1990)

    Article  ADS  Google Scholar 

  8. F.A. McDonald, Appl. Phys. Lett. 56, 230 (1990)

    Article  ADS  Google Scholar 

  9. J.B. Spicer, A.D.W. McKie, J.W. Wagner, Appl. Phys. Lett. 57, 1882 (1990)

    Article  ADS  Google Scholar 

  10. B.A. Auld, Acoustic Fields and Waves in Solids (Wiley Interscience, New York, 1973)

    Google Scholar 

  11. R. Ludwig, W. Lord, IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 35, 809 (1988)

    Google Scholar 

  12. R. Ludwig, D. Moore, W. Lord, IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 36, 342 (1989)

    Google Scholar 

  13. H. Al-Qahtani, S.K. Datta, J. Appl. Phys. 96, 3645 (2004)

    Article  ADS  Google Scholar 

  14. B. Hosten, M. Castaings, NDT&E Int. 39, 195 (2006)

  15. M. Castaings, C. Bacon, B. Hosten, J. Acoust. Soc. Am. 115, 1125 (2004)

    Article  ADS  Google Scholar 

  16. B.Q. Xu, Z.H. Shen, J.J. Wang, X.W. Ni, J.F. Guan, J. Lu, J. Appl. Phys. 99, 0335081 (2006)

    Google Scholar 

  17. C. Johnson, Numerical Solution of Partial Differential Equations by the Finite Element Method (Cambridge University Press, New York, 1987)

    MATH  Google Scholar 

  18. B.Q. Xu, Z.H. Shen, X.W. Ni, J. Lu, J. Appl. Phys. 95, 2116 (2004)

    Article  ADS  Google Scholar 

  19. B.Q. Xu, Z.H. Shen, J.J. Wang, X.W. Ni, J.F. Guan, J. Lu, Opt. Laser Technol. 38, 138 (2006)

    Article  Google Scholar 

  20. M.J.S. Love, G. Neau, M. Deschamps, Properties of guided waves in composite plates, and implications for NDE, in Review of Progress in Quantitative Nondestructive Evaluation, vol. 23, ed. by D.O. Thompson, D.E. Chimenti (American Institute of Physics, New York, 2004), pp. 214–221

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baiqiang Xu.

Additional information

PACS

43.35.+d; 02.70.Dh; 42.62.-b; 78.20.Nv; 81.70.Cv

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, B., Feng, J., Xu, G. et al. Laser-generated thermoelastic acoustic sources and Lamb waves in anisotropic plates. Appl. Phys. A 91, 173–179 (2008). https://doi.org/10.1007/s00339-007-4354-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-007-4354-5

Keywords

Navigation