Skip to main content
Log in

Novel deep centers for high-performance optical materials

  • Rapid communication
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Materials exhibiting strong optical emission also exhibit strong absorption at the same wavelengths because both emission and absorption are governed by the same optical dipole and density-of-states. Laser action requires a carrier injection large enough for emission to exceed absorption at laser wavelengths. Thus, strong self-absorption at luminescent wavelengths raises the operating current of LEDs, lasers, and optical amplifiers. Here we demonstrate that, contrary to conventional expectations, materials designed with novel deep centers achieve surprisingly large optical emission while, simultaneously, the inverse process of optical absorption remains very small. A striking consequence is that materials designed with our novel deep centers achieve transparency at a carrier injection which is four-orders-of-magnitude lower than in all technologically important semiconductors. Simultaneously, and surprisingly, our novel deep centers in GaAs achieve an optical gain, Einstein B coefficient, and radiative efficiency significantly larger than in direct-band-gap materials at 1.3–1.5 μm. We engineered this dramatic reduction of the injection to achieve transparency while retaining strong optical emission in our novel material by making use of a Franck–Condon shift of absorption away from luminescent wavelengths.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. M.G. Bernard, G. Duraffourg, Phys. Stat. Solidi 1, 699 (1961)

    Article  Google Scholar 

  2. A. Yariv, Quantum Electronics, 2nd edn. (Wiley, New York, 1975)

  3. G.P. Agrawal, N.K. Dutta, Long-wavelength Semiconductor Lasers (Van Nostrand Reinhold, New York, 1986)

    Google Scholar 

  4. R.N. Hall, G.E. Fenner, J.D. Kingsley, T.J. Soltys, R.O. Carlson, Phys. Rev. Lett. 9, 366 (1962)

    Article  ADS  Google Scholar 

  5. M.I. Nathan, W.P. Dumke, G. Burns, F.H. Dills, G. Lasher, Appl. Phys. Lett. 1, 62 (1962)

    Article  ADS  Google Scholar 

  6. T.M. Quist, R.J. Keyes, W.E. Krag, B. Lax, A.L. McWhorter, R.H. Rediker, H.J. Zeiger, Appl. Phys. Lett. 1, 91 (1962)

    Article  ADS  Google Scholar 

  7. N. Holonyak Jr., S.F. Bevacqua, Appl. Phys. Lett. 1, 82 (1962)

    Article  ADS  Google Scholar 

  8. W. Ha, V. Gambin, M. Wistey, S. Bank, H. Yuen, S. Kim, J.S. Harris, Electron. Lett. 38, 277 (2002)

    Article  Google Scholar 

  9. R. Shau, H. Halbritter, F. Riemenschneider, M. Ortsiefer, J. Rosskopf, G. Bohm, M. Maute, P. Meissner, M.-C. Amann, Electron. Lett. 39, 1728 (2003)

    Article  Google Scholar 

  10. D.R. Matthews, H.D. Summers, P.M. Smowton, M. Hopkinson, Appl. Phys. Lett. 81, 4904 (2002)

    Article  ADS  Google Scholar 

  11. M. Hofmann, A. Wagner, C. Ellmers, C. Schlichenmeier, S. Schaefer, F. Hoehnsdorf, J. Koch, W. Stolz, S.W. Koch, W.W. Ruehle, J. Hader, J.V. Moloney, E.P. O’Reilly, B. Borchert, A.Yu. Egorov, H. Riechert, Appl. Phys. Lett. 78, 3009 (2001)

    Google Scholar 

  12. H. Lei, H.S. Leipner, V. Bondarenko, J. Schreiber, J. Phys.: Condens. Matter 16, S279 (2004)

    Article  ADS  Google Scholar 

  13. M. Tajima, R. Toba, N. Ishida, M. Warashina, Mater. Sci. Technol. 13, 949 (1997)

    Google Scholar 

  14. J. Kanga, K. Hoshikawaa, M. Tajima, T. Fukudaa, J. Cryst. Growth 135, 623 (1994)

    Article  ADS  Google Scholar 

  15. E.W. Williams, Phys. Rev. 168, 922 (1968)

    Article  ADS  Google Scholar 

  16. M.A. Reshchikov, A.A. Gutkin, V.E. Sedov, Mater. Sci. Forum 196201, 237 (1995)

    Google Scholar 

  17. M. Suezawa, A. Kasuya, Y. Nishina, K. Sumino, J. Appl. Phys. 69, 1618 (1991)

    Article  ADS  Google Scholar 

  18. J.K. Kung, W.G. Spitzer, J. Appl. Phys. 45, 4477 (1974)

    Article  ADS  Google Scholar 

  19. S.Y. Chiang, G.L. Pearson, J. Luminesc. 10, 313 (1975)

    Article  Google Scholar 

  20. T. Sauncy, C.P. Palsule, M. Holtz, S. Gangopadhyay, S. Massie, Phys. Rev. B 53, 1900 (1996)

    Article  ADS  Google Scholar 

  21. M. Suezawa, A. Kasuya, Y. Nishina, K. Sumino, J. Appl. Phys. 76, 1164 (1994)

    Article  ADS  Google Scholar 

  22. F.M. Vorobkalo, K.D. Glinchuk, A.V. Prokhorovich, G. John, Phys. Stat. Solidi A 15, 287 (1973)

    Article  Google Scholar 

  23. F.M. Vorobkalo, K.D. Glinchuk, A.V. Prokhorovich, Phys. Stat. Solidi A 7, 135 (1971)

    Article  Google Scholar 

  24. F.M. Vorobkalo, K.D. Glinchuk, A.V. Prokhorovich, Phys. Stat. Solidi A 1, K109 (1970)

    Article  Google Scholar 

  25. P. Ebert, Curr. Opin. Solid State Mater. Sci. 5, 211 (2001)

    Article  Google Scholar 

  26. J. Gebauer, M. Lausmann, T.E.M. Staab, R. Krause-Rehberg, M. Hakala, M.J. Puska, Phys. Rev. B 60, 1464 (1999)

    Article  ADS  Google Scholar 

  27. C. Domke, P. Ebert, K. Urban, Phys. Rev. B 57, 4482 (1998)

    Article  ADS  Google Scholar 

  28. C. Domke, P. Ebert, M. Heinrich, K. Urban, Phys. Rev. B 54, 10288 (1996)

    Article  ADS  Google Scholar 

  29. J. Gebauer, R. Krause-Rehberg, C. Domke, P. Ebert, K. Urban, Phys. Rev. Lett. 78, 3334 (1997)

    Article  ADS  Google Scholar 

  30. K.L. Shaklee, R.E. Nahory, R.F. Leheny, J. Luminesc. 7, 284 (1973)

    Article  Google Scholar 

  31. K.L. Shaklee, R.F. Leheny, Appl. Phys. Lett. 18, 475 (1971)

    Article  ADS  Google Scholar 

  32. M.R. Melloch, J.M. Woodall, E.S. Harmon, N. Otsuka, F.H. Pollak, D.D. Nolte, R.M. Feenstra, M.A. Lutz, Ann. Rev. Mater. Sci. 25, 547 (1995)

    Article  Google Scholar 

  33. M.R. Melloch, D.D. Nolte, J.M. Woodall, J.C.P. Chang, E.S. Harmon, Crit. Rev. Solid State Mater. Sci. 21, 189 (1996)

    Article  Google Scholar 

  34. R. Olshansky, C. Su, J. Manning, W. Powazinik, IEEE J. Quantum Electron. QE-20, 838 (1984)

    Article  ADS  Google Scholar 

  35. E. Wintner, E.P. Ippen, Appl. Phys. Lett. 44, 999 (1984)

    Article  ADS  Google Scholar 

  36. T. Uji, K. Iwamoto, R. Lang, IEEE Trans. Electron Devices ED-30, 316 (1983)

    Google Scholar 

  37. H. Ito, T. Furuta, T. Ishibashi, Appl. Phys. Lett. 58, 2936 (1991)

    Article  ADS  Google Scholar 

  38. H.C. Casey Jr., F. Stern, J. Appl. Phys. 47, 631 (1976)

    Article  ADS  Google Scholar 

  39. R.J. Nelson, R.G. Sobers, J. Appl. Phys. 49, 6103 (1978)

    Article  ADS  Google Scholar 

  40. A. Maassdorf, S. Gramlich, E. Richter, F. Brunner, M. Weyers, G. Traenkle, J.W. Tomm, Y.I. Mazur, D. Nickel, V. Malyarchuk, T. Guenther, C. Lienau, A. Baerwolff, T. Elsaesserm, J. Appl. Phys. 91, 5072 (2002)

    Article  ADS  Google Scholar 

  41. E. Yablonovitch, G. Cody, IEEE Trans. Electron Devices ED-29, 300 (1982)

    Google Scholar 

  42. E. Yablonovitch, J. Opt. Soc. Am. 72, 899 (1982)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J.L. Pan.

Additional information

PACS

71.55.Eq; 71.55.-i; 78.67.-n; 81.10.-h; 85.60.Jb

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pan, J., McManis, J., Gupta, M. et al. Novel deep centers for high-performance optical materials. Appl. Phys. A 90, 105–112 (2008). https://doi.org/10.1007/s00339-007-4322-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-007-4322-0

Keywords

Navigation