Skip to main content
Log in

Relating plasma surface modification to polymer characteristics

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

This paper aims to provide an analysis of the correlation between various plasma effects on polymers exposed to atmospheric pressure plasma. The relationship linking the surface polarity, the chemical structure and composition and the crystalline/amorphous phase contribution in the surface modification mechanisms of plasma-exposed polymers is explored. Different polymers were chosen comprising of various structures, functionality, degree of oxidation, crystallinity, and were treated under a particular experimental configuration, and dielectric barrier discharge-type. The plasma parameters and the treatment settings are observed, in relation to relevant surface properties, as surface energy components, surface topography, structural changes and chemical composition, under conditions where the gaseous environment chosen, He-N2, allows complex surface modification, by combined functionalisation and crosslinking.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. D’Agostino, Plasma Deposition, Treatment, and Etching of Polymers (Academic, San Diego, 1990)

    Google Scholar 

  2. M. Strobel, C.S. Lyons, K.L. Mittal (Eds.), Plasma surface Modification of Polymers: Relevance to Adhesion (VSP, Zeist, 1995)

  3. N. Inagaki, Plasma Surface Modification and Plasma Polymerization (Technomic, Basel, 1996)

    Google Scholar 

  4. F.S. Denes, S. Manolache, Prog. Polym. Sci. 29, 815 (2004)

    Article  Google Scholar 

  5. J.M. Grace, L.J. Gerenser, J. Dispers. Sci. Technol. 24, 305 (2003)

    Article  Google Scholar 

  6. G. Borcia, A. Chiper, I. Rusu, Plasma Sources Sci. Technol. 15, 849 (2006)

    Google Scholar 

  7. F. Massines, A. Rabehi, P. Decomps, R. Ben Gadri, P. Segur, C. Mayoux, J. Appl. Phys. 83, 2950 (1998)

    Article  ADS  Google Scholar 

  8. D.T. Clark, A. Dilks, J. Polym. Sci. Polym. Chem. Ed. 16, 911 (1978)

    Article  Google Scholar 

  9. G. Placinta, F. Arefi-Khonsari, M. Gheorghiu, J. Amouroux, G. Popa, J. Appl. Polym. Sci. 66, 1367 (1997)

    Article  Google Scholar 

  10. A. Meyer-Plath, K. Schröder, B. Finke, A. Ohl, Vacuum 71, 391 (2003)

    Article  Google Scholar 

  11. V. Gauvreau, P. Chevallier, K. Vallières, E. Petitclerc, R. Gaudreault, G. Laroche, Bioconjugate Chem. 15, 1146 (2004)

  12. P.H. Hermans, A. Weidinger, Makromol. Chem. 24, 44 (1961)

    Google Scholar 

  13. R.A. Fava (Ed.), Methods of Experimental Physics: Polymers (Academic, New York, 1973)

  14. H.P. Klug, L.E. Alexander, X-ray Difraction Procedure for Polycrystalline and Amorphous Materials (Wiley, New York, 1954)

    Google Scholar 

  15. G. Beamson, D. Briggs, High Resolution XPS of Organic Polymers: The Scienta ESCA300 Database (Wiley, Chichester, 1992)

    Google Scholar 

  16. N. Dumitrascu, G. Borcia, N. Apetroaei, G. Popa, Plasma Sources Sci. Technol. 11, 127 (2002)

    Google Scholar 

  17. R.H. Hansen, H. Schonhorn, J. Polym. Sci. B 4, 203 (1966)

    Article  Google Scholar 

  18. R. Hussain, D. Mohammad, Turk. J. Chem 28, 725 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Borcia.

Additional information

PACS

81.65.-b; 81.05.-t; 52.77.-j

Rights and permissions

Reprints and permissions

About this article

Cite this article

Borcia, C., Borcia, G. & Dumitrascu, N. Relating plasma surface modification to polymer characteristics. Appl. Phys. A 90, 507–515 (2008). https://doi.org/10.1007/s00339-007-4313-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-007-4313-1

Keywords

Navigation