Skip to main content
Log in

Solidly mounted resonators consisting of a molybdenum and titanium Bragg reflector

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The fabrication and frequency responses of solidly mounted resonators (SMRs) consisting of a single layer of aluminum nitride (AlN) piezoelectric thin film, and varying numbers of multi-layered titanium/molybdenum (Ti/Mo) thin films has been investigated. In order to obtain the frequency response near 2.5 GHz, specific thicknesses of AlN, Mo, and Ti were designed for the thin film deposition processes. Manufacturing parameters of thin films in the sputtering system, such as deposition power, temperature and pressure, were adjusted to obtain the optimum surface roughness of 13.9 nm for four-pair Ti/Mo. The SMR devices with various numbers of Ti/Mo pairs were investigated and the frequency responses were compared. The SMR devices showed the distinct resonant phenomenon with excellent sidelobe suppression at 2.31 GHz. The more Ti/Mo pairs, the better the frequency characteristics obtained. The experimental results revealed that the Ti/Mo Bragg reflector exhibits an excellent property to restrain acoustic dissipation caused by the substrate, and is suitable for the fabrication of SMR devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.S. Naik, J.J. Lutsky, R. Reif, IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 47, 292 (2000)

    Article  Google Scholar 

  2. S.H. Lee, K.H. Yoon, J.K. Lee, J. Appl. Phys. 92, 4062 (2002)

    Article  ADS  Google Scholar 

  3. K.M. Lakin, J.R. Belsick, J.P. McDonald, K.T. McCarron, C.W. Andrus, MTT-S 2002 Paper TH1D-6 Expanded

  4. K.W. Tay, C.L. Huang, L. Wu, M.S. Lin, Japan. J. Appl. Phys. 43, 5510 (2004)

    Article  ADS  Google Scholar 

  5. C.L. Huang, K.W. Tay, L. Wu, Mater. Lett. 59, 1012 (2005)

    Article  Google Scholar 

  6. W.E. Newell, Proc. IEEE 53, 575 (1965)

    Article  Google Scholar 

  7. K.M. Lakin, IEEE Trans. Microw. Theory Techniques 43, 2933 (1995)

    Google Scholar 

  8. K.M. Lakin, K.T. McCarron, R.E. Rose, IEEE Ultrasonics Symp. 905 (1995)

  9. H. Kobayashi, Y. Ishid, K. Ishikawa, A. Doi, K. Nakamura, Japan. J. Appl. Phys. 41, 3455 (2002)

    Article  ADS  Google Scholar 

  10. H. Kanbara, H. Kobayashi, K. Nakamura, Japan. J. Appl. Phys. 39, 3049 (2000)

    Article  ADS  Google Scholar 

  11. K. Nakamura, H. Kanbara, IEEE Int. Frequency Control Symp. 876 (1998)

  12. S.H. Kim, J.H. Kim, H.D. Park, G. Yoon, J. Vac. Sci. Technol. B 19, 1164 (2001)

    Article  ADS  Google Scholar 

  13. R. Lanz, P. Muralt, in Proc. IEEE Ultrasonics Symp. 178 (2003)

  14. J. Bjurstrom, D. Rosen, I. Katardjiev, V.M. Yanchev, I. Petrov, IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 51, 1347 (2004)

    Article  Google Scholar 

  15. R. Aigner, J. Kaitila, J. Ella, L. Elbrebht, W. Nessler, M. Handtmann, T.R. Herzog, S. Marksteiner, IEEE MTT-S Digest Vol. TH5D-4, 2004 (2003)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying-Chung Chen.

Additional information

PACS

43.20.Gp; 43.20.Ks; 77.65.Fs

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wei, CL., Chen, YC., Cheng, CC. et al. Solidly mounted resonators consisting of a molybdenum and titanium Bragg reflector. Appl. Phys. A 90, 501–506 (2008). https://doi.org/10.1007/s00339-007-4312-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-007-4312-2

Keywords

Navigation