Skip to main content
Log in

Temperature-driven change of morphology and magnetic anisotropy of Fe monolayers on GaAs(001)

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The thickness- and temperature-dependent irreversible change of morphology and magnetic parameters of 5 and 10 monolayers (ML) of Fe on GaAs(001) are investigated by scanning tunnelling microscopy, low energy electron diffraction, ferromagnetic resonance and magnetometry in ultra-high vacuum. After heating to 550 K (5 ML) or 650 K (10 ML) large flat islands form which have the same vertical layer spacing as the continuous film. The morphological change is reflected in a change of the magnetic anisotropy parameters by a factor of up to 5 in the case of cubic and by a reduction of up to 20% for the overall uniaxial anisotropy contributions. The magnetization of the film did not change after the transformation. These results are explained by the increased number of steps leading to an increase of the shape anisotropy, which in turn reduces the overall uniaxial out-of-plane anisotropy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Ohno, D.K. Young, B. Beschoten, F. Matsukura, H. Ohno, D.D. Awschalom, Nature (London) 402, 790 (1999)

    Article  ADS  Google Scholar 

  2. G. Wastlbauer, J.A.C. Bland, Adv. Phys. 54, 137 (2005) and references therein

    Article  ADS  Google Scholar 

  3. G.A. Prinz, Science 282, 1660 (1996)

    Article  Google Scholar 

  4. K. Zakeri, T. Kebe, J. Lindner, M. Farle, J. Magn. Magn. Mater. 299, L1 (2006)

    Article  ADS  Google Scholar 

  5. K. Zakeri, T. Kebe, J. Lindner, M. Farle, Phys. Rev. B 73, 052405 (2006)

    Article  ADS  Google Scholar 

  6. J.M. Shaw, S. Park, C.M. Falco, J. Appl. Phys. 95, 6552 (2004)

    Article  ADS  Google Scholar 

  7. J.M. Shaw, C.M. Falco, J. Magn. Magn. Mater. 286, 420 (2005)

    Article  ADS  Google Scholar 

  8. B. Lépine, S. Ababuo, A. Guivarc’h, G. Jézéqule, S. Députier, R. Guérin, A. Filipe, A. Schuhl, F. Abel, C. Cohen, A. Rocher, J. Crestou, J. Appl. Phys. 83, 3077 (1998)

    Article  ADS  Google Scholar 

  9. Kh. Zakeri, Th. Kebe, J. Lindner, M. Farle, Superlattices Microstruct. 41, 116 (2007)

  10. D.K. Biegelsen, R.D. Bringans, J.E. Northrup, L.-E. Swartz, Phys. Rev. B 41, 5701 (1990)

    Article  ADS  Google Scholar 

  11. T.L. Monchesky, B. Heinrich, R. Urban, M. Klaua, J. Kirscher, J. Appl. Phys. 87, 5167 (2000)

    Article  ADS  Google Scholar 

  12. A. Ionescu, M. Tselepi, D.M. Gillingham, G. Wastlbauer, S.J. Steinmuller, H.E. Beere, D.A. Ritchie, J.A.C. Bland, Phys. Rev. B 72, 125404 (2005)

    Article  ADS  Google Scholar 

  13. Q. Xue, T. Hashizume, J.M. Zhou, T. Sakata, T. Ohno, T. Sakurai, Phys. Rev. Lett. 74, 3177 (1995)

    Article  ADS  Google Scholar 

  14. M. Farle, Rep. Prog. Phys. 61, 755 (1998)

    Article  ADS  Google Scholar 

  15. K. Zakeri, T. Kebe, J. Lindner, C. Antoniak, M. Farle, K. Lenz, T. Toliński, K. Baberschke, Phase Trans. 79, 793 (2006)

    Google Scholar 

  16. J.A.C. Bland, B. Heinrich, Ultrathin Magnetic Structures III (Springer, Berlin, Heidelberg, 2005), pp. 143–210

    Google Scholar 

  17. A. Ney, P. Poulopoulos, M. Farle, K. Baberschke, Phys. Rev. B 62, 11336 (2000)

    Article  ADS  Google Scholar 

  18. T. Kebe, K. Zakeri, J. Lindner, M. Spasova, M. Farle, J. Phys.: Condens. Matter 18, 8791 (2006)

    Article  Google Scholar 

  19. R. Moosbuhler, F. Bensch, M. Dumm, G. Bayreuther, J. Appl. Phys. 91, 8757 (2002)

    Article  ADS  Google Scholar 

  20. R. Urban, G. Woltersdorf, B. Heinrich, Phys. Rev. Lett. 87, 217204 (2001)

    Article  ADS  Google Scholar 

  21. T.L. Monchesky, B. Heinrich, R. Urban, K. Myrtle, M. Klaua, J. Kirscher, Phys. Rev. B 60, 10242 (1999)

    Article  ADS  Google Scholar 

  22. S. McPhail, C.M. Cürtler, F. Montaigne. Y.B. Yu, M. Tselepi, J.A.C. Bland, Phys. Rev. B 67, 24409 (2003)

    Article  ADS  Google Scholar 

  23. M. Madami, S. Tacchi, G. Carlotti, G. Gubbiotti, R.L. Stamps, Phys. Rev. B 69, 144408 (2004)

    Article  ADS  Google Scholar 

  24. R.A. Gordon, E.D. Crozier, Phys. Rev. B 74, 165405 (2006)

    Article  ADS  Google Scholar 

  25. J. Camarero, J.J. de Miguel, R. Miranda, V. Raposo, A. Hernando, Phys. Rev. B 64, 11336 (2001)

    Google Scholar 

  26. P. Poulopoulos, J. Lindner, M. Farle, K. Baberschke, Surf. Sci. 437, 277 (1999)

    Article  Google Scholar 

  27. P. Bruno, J. Appl. Phys. 64, 3153 (1988)

    Article  ADS  Google Scholar 

  28. P. Bruno, J. Phys. F Met. Phys. 18, 1291 (1988)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Zakeri.

Additional information

PACS

75.50.Bb; 75.70.Ak; 76.50.+g

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zakeri, K., Urban, C., Kebe, T. et al. Temperature-driven change of morphology and magnetic anisotropy of Fe monolayers on GaAs(001). Appl. Phys. A 90, 487–491 (2008). https://doi.org/10.1007/s00339-007-4310-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-007-4310-4

Keywords

Navigation