Skip to main content

Laser drilling of high aspect ratio holes in copper with femtosecond, picosecond and nanosecond pulses


Deep laser holes were drilled in copper sheets using various pulse lengths and environments. By recording the intensity on a photodiode placed under the sample while drilling the holes, we obtained the number of pulses to drill through the sheet as a function of pulse length and energy. The entrance diameter of the holes was successfully predicted using a Gaussian approximation and a material removal fluence threshold of 0.39 J/cm2 for a pulse length of 150 fs. From cross sections of the holes, the morphology of the inside walls was observed and shows an increase in the amount of molten material with pulse length. A transition pulse length is defined as the point at which the laser affected material goes from being mainly vaporized to mainly melted. This transition occurs near ∼10 ps, which corresponds approximately to the electron–phonon relaxation time for copper.

This is a preview of subscription content, access via your institution.


  1. B.N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, A. Tünnermann, Appl. Phys. A 63, 109 (1996)

    Article  ADS  Google Scholar 

  2. S. Nolte, C. Momma, H. Jacobs, A. Tünnermann, B.N. Chichkov, B. Wellegehausen, H. Welling, J. Opt. Soc. Am. B 14, 2716 (1997)

    ADS  Google Scholar 

  3. J. Bonse, S. Baudach, J. Krüger, W. Kautek, M. Lenzner, Appl. Phys. A 74, 19 (2002)

    Article  ADS  Google Scholar 

  4. D. Ashkenasi, M. Lorenz, R. Stoian, A. Rosenfeld, Appl. Surf. Sci. 150, 101 (1999)

    Article  ADS  Google Scholar 

  5. T.Q. Jia, Z.Z. Xu, X.X. Li, R.X. Li, B. Shuai, F.L. Zhao, Appl. Phys. Lett. 82, 4382 (2003)

    Article  ADS  Google Scholar 

  6. L. Shah, J. Tawney, M. Richardson, K. Richardson, Appl. Surf. Sci. 183, 151 (2001)

    Article  ADS  Google Scholar 

  7. S. Juodkazis, H. Okuno, N. Kujime, S. Matsuo, H. Misawa, Appl. Phys. A 79, 1555 (2004)

    ADS  Google Scholar 

  8. H. Varel, D. Ashkenasi, A. Rosenfeld, M. Wähmer, E.E.B. Campbell, Appl. Phys. A 65, 367 (1997)

    Article  ADS  Google Scholar 

  9. A. Luft, U. Franz, A. Emsermann, J. Kaspar, Appl. Phys. A 63, 93 (1996)

    Article  ADS  Google Scholar 

  10. S. Bruneau, J. Hermann, G. Dumitru, M. Sentis, E. Axente, Appl. Surf. Sci. 248, 299 (2005)

    Article  ADS  Google Scholar 

  11. P. Solana, P. Kapadia, J. Dowden, W.S.O. Rodden, S.S. Kudesia, D.P. Hand, J.D.C. Jones, Opt. Commun. 191, 97 (2001)

    Article  ADS  Google Scholar 

  12. N.N. Nedialkov, P.A. Atanasov, Appl. Surf. Sci. 252, 4411 (2006)

    Article  ADS  Google Scholar 

  13. A.E. Wynne, B.C. Stuart, Appl. Phys. A 76, 373 (2003)

    Article  ADS  Google Scholar 

  14. A. Borowiec, H.K. Haugen, Appl. Phys. A 79, 521 (2004)

    Article  ADS  Google Scholar 

  15. K. Furusawa, K. Takahashi, H. Kumagai, K. Midorikawa, M. Obara, Appl. Phys. A 69, S359 (1999)

    Article  ADS  Google Scholar 

  16. S.E. Kirkwood, A.C. van Popta, Y.Y. Tsui, R. Fedosejevs, Appl. Phys. A 81, 729 (2005)

    Article  ADS  Google Scholar 

  17. H.E. Elsayed-Ali, T.B. Norris, M.A. Pessot, G.A. Mourou, Phys. Rev. Lett. 58, 1212 (1987)

    Article  ADS  Google Scholar 

  18. C. Schäfer, H.M. Urbassek, L.V. Zhigilei, Phys. Rev. B 66, 115404 (2002)

    Article  ADS  Google Scholar 

  19. M.M. Murnane, H.C. Kapteyn, M.D. Rosen, R.W. Falcone, Science 251, 531 (1991)

    Article  ADS  Google Scholar 

  20. S.S. Mao, X.L. Mao, R. Greif, R.E. Russo, Appl. Phys. Lett. 77, 2464 (2000)

    Article  ADS  Google Scholar 

  21. S.S. Mao, X.L. Mao, R. Greif, R.E. Russo, Appl. Phys. Lett. 76, 31 (2000)

    Article  ADS  Google Scholar 

  22. A. Weck, T.H.R. Crawford, D.S. Wilkinson, H.K. Haugen, J.S. Preston, Appl. Phys. A, online first, DOI:10.1007/s00339-007-4203-6 (2007)

  23. J. Kleinbauer, R. Knappe, R. Wallenstein, Appl. Phys. B 80, 315 (2005)

    Article  ADS  Google Scholar 

  24. J. Thøgersen, A. Borowiec, H.K. Haugen, F.E. McNeill, I. M Stronach, Appl. Phys. A 73, 361 (2001)

    ADS  Article  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to A. Weck.

Additional information


62.20.Mk; 62.25.+g; 79.20.Ds

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Weck, A., Crawford, T., Wilkinson, D. et al. Laser drilling of high aspect ratio holes in copper with femtosecond, picosecond and nanosecond pulses. Appl. Phys. A 90, 537–543 (2008).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Pulse Energy
  • Pulse Length
  • Molten Material
  • Nanosecond Pulse
  • Laser Drilling