Advertisement

Applied Physics A

, Volume 89, Issue 3, pp 655–661 | Cite as

Structural changes of thin films from recombinant spider silk proteins upon post-treatment

  • E. Metwalli
  • U. Slotta
  • C. Darko
  • S.V. Roth
  • T. Scheibel
  • C.M. PapadakisEmail author
Invited paper

Abstract

Engineering of spider silk proteins offers the possibility to control their molecular sequence and thus their material properties. Spin coating was used to prepare films of engineered spider silk protein derived from the garden spider’s (Araneus diadematus) dragline silk protein ADF-4. A conformational transition from α-helix to β-sheet-rich structures upon methanol treatment of the films was detected by external reflection IR spectroscopy. We present direct evidence for this structural transformation using grazing-incidence X-ray diffraction (GIXRD) and small-angle scattering (GISAXS). The protein film structure after the methanol treatment consists mainly of β-sheet polyalanine crystals dispersed in an amorphous protein matrix. The GIXRD intensity profiles show Bragg peaks from β-sheet polyalanine crystallites having an average size of 7.5 nm. The non-uniform and large crystal size distributions within the film were explained based on the protein composition. The effect of the chemical nature of the interface on the protein film structure was investigated as well.

Keywords

HFIP Silk Protein Spider Silk Dragline Silk Methanol Treatment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.M. Gosline, P.A. Guerette, C.S. Ortlepp, K.N. Savage, J. Exp. Biol. 202, 3295 (1999)Google Scholar
  2. 2.
    F.W. Billmeyer, Textbook of Polymer Science (Wiley, New York, 1984)Google Scholar
  3. 3.
    C.Y. Hayashi, N.H. Shipley, R.V. Lewis, Int. J. Biol. Macromol. 24, 271 (1999)CrossRefGoogle Scholar
  4. 4.
    E. Oroudjev, J. Soares, S. Arcidiacono, J.B. Thompson, S.A. Fossey, H.G. Hansma, PNAS 99, 6460 (2007)CrossRefGoogle Scholar
  5. 5.
    C.Y. Hayashi, R.V. Lewis, J. Mol. Biol. 275, 773 (1998)CrossRefGoogle Scholar
  6. 6.
    H.M. Peters, Fine structure and function of capture threads, in Ecophysiology of Spiders, ed. by W. Netwig (Springer, Berlin, 1987) pp. 187–202Google Scholar
  7. 7.
    S. Rammensee, D. Huemmerich, K.D. Hermanson, T. Scheibel, A.R. Bausch, Appl. Phys. A 82, 261 (2006)CrossRefADSGoogle Scholar
  8. 8.
    J. Sirichaisit, R.J. Young, F. Vollrath, Polymer 41, 1223 (2000)CrossRefGoogle Scholar
  9. 9.
    B. Panilaitis, G.H. Altman, J. Chen, H.J. Jin, V. Karageorgiou, D.L. Kaplan, Biomaterials 24, 3079 (2003)CrossRefGoogle Scholar
  10. 10.
    T. Scheibel, Microbiol. Cell Fact. 3, 14 (2004)CrossRefGoogle Scholar
  11. 11.
    S. Hofmann, C.T.W.P. Foo, F. Rossetti, M. Textor, G. Vunjak-Novakovic, D.L. Kaplan, H.P. Merkle, L. Meinel, J. Control. Release 111, 219 (2006)CrossRefGoogle Scholar
  12. 12.
    C. Vendrely, T. Scheibel, Macromol. Biosci. 7, 401 (2007)CrossRefGoogle Scholar
  13. 13.
    D. Huemmerich, U. Slotta, T. Scheibel, Appl. Phys. A 82, 219 (2006)CrossRefADSGoogle Scholar
  14. 14.
    C. Zhao, J. Yao, H. Masuda, R. Kishore, T. Asakura, Biopolymers 69, 253 (2003)CrossRefGoogle Scholar
  15. 15.
    I.C. Um, H.Y. Kweon, Y.H. Park, S. Hudson, Int. J. Biol. Macromol. 29, 91 (2001)CrossRefGoogle Scholar
  16. 16.
    S.W. Ha, A.E. Tonelli, S.M. Hudson, Biomacromolecules 6, 1722 (2005)CrossRefGoogle Scholar
  17. 17.
    X. Chen, D.P. Knight, Z. Shao, F. Vollrath, Biochemistry 41, 14944 (2002)CrossRefGoogle Scholar
  18. 18.
    U. Slotta, M. Tammer, F. Kremer, P. Koelsch, T. Scheibel, Supramol. Chem. 18, 465 (2006)CrossRefGoogle Scholar
  19. 19.
    D. Huemmerich, C.W. Helsen, S. Quedzuweit, J. Oschmann, R. Rudolph, T. Scheibel, Biochemistry 43, 13604 (2004)CrossRefGoogle Scholar
  20. 20.
    R. Feidenhans’l, Surf. Sci. Rep. 10, 105 (1989)CrossRefADSGoogle Scholar
  21. 21.
    O. Bunk, M.M. Nielsen, J. Appl. Cryst. 37, 216 (2004)CrossRefGoogle Scholar
  22. 22.
    S.V. Roth, R. Döhrmann, M. Dommach, M. Kuhlmann, I. Kröger, R. Gehrke, H. Walter, C. Schroer, B. Lengeler, P. Müller-Buschbaum, Rev. Sci. Instrum. 77, 085106 (2006)CrossRefADSGoogle Scholar
  23. 23.
    R. Lazzari, J. Appl. Cryst. 35, 406 (2002)CrossRefGoogle Scholar
  24. 24.
    M. Rauscher, R. Paniago, H. Metzger, Z. Kovats, J. Domke, J. Peisl, H.-D. Pfannes, J. Schulze, I. Eisele, J. Appl. Phys. 86, 6763 (1999)CrossRefADSGoogle Scholar
  25. 25.
    D.C. Lee, D. Chapman, Methods Mol. Biol. 22, 183 (1994)Google Scholar
  26. 26.
    E.A. Cooper, K. Knutson, Fourier transform infrared spectroscopy investigations of protein structure, in Physical Methods to Characterize Pharmaceutical Proteins (Plenum, New York, 1995) pp. 101–143Google Scholar
  27. 27.
    D.M. Byler, H. Susi, SPIE 553, 289 (1985)Google Scholar
  28. 28.
    W.Z. He, W.R. Newell, P.I. Haris, D. Chapman, J. Barber, Biochemistry 30, 4552 (1991)CrossRefGoogle Scholar
  29. 29.
    D.T. Grubb, L.W. Jelinski, Macromolecules 30, 2860 (1997)CrossRefADSGoogle Scholar
  30. 30.
    A. Glišović, T. Salditt, Appl. Phys. A 87, 63 (2007)CrossRefADSGoogle Scholar
  31. 31.
    B.D. Cullity, Elements of X-ray Diffraction (Addison-Wesley, Reading, MA, 1987)Google Scholar
  32. 32.
    C. Riekel, F. Vollrath, Int. J. Biol. Macromol. 29, 203 (2001)CrossRefGoogle Scholar
  33. 33.
    G.S. Nadiger, V.G. Halliyal, Colourage 31, 23 (1984)Google Scholar
  34. 34.
    B.L. Thiel, K.B. Guess, C. Viney, Biopolymers 41, 703 (1997)CrossRefGoogle Scholar
  35. 35.
    K.D. Collins, M.W. Washabaugh, Q. Rev. Biophys. 18, 323 (1985)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • E. Metwalli
    • 1
  • U. Slotta
    • 2
  • C. Darko
    • 1
  • S.V. Roth
    • 3
  • T. Scheibel
    • 2
  • C.M. Papadakis
    • 1
    Email author
  1. 1.Physikdepartment E13Technische Universität MünchenGarchingGermany
  2. 2.Department Chemie, Lehrstuhl für BiotechnologieTechnische Universität MünchenGarchingGermany
  3. 3.HASYLAB at DESYHamburgGermany

Personalised recommendations