Applied Physics A

, Volume 90, Issue 2, pp 277–283 | Cite as

Mechanical properties of polymer nanostructures: measurements based on deformation in response to capillary forces

Article

Abstract

Arrays of test structures consisting of sub-150 nm wide beams were lithographically fabricated in poly(methyl methacrylate) (PMMA) and used to measure the elastic mechanical properties of the material. Capillary forces that arise during the drying of rinse liquids from the test structures caused the nanoscale polymer beams to deform. The initial capillary forces were defined by the test structure geometry, and the magnitudes of the forces were quantified using a two-dimensional Young–Laplace equation. The deformation of the nanostructured beams was measured experimentally and compared to a model based on continuum-level bending beam mechanics, thereby enabling the calculation of the Young’s modulus (E) of the material. For PMMA beams greater than 100 nm in width E was calculated to be 5.1 GPa at room temperature, which corresponds closely to the elastic modulus of bulk PMMA. The Young’s moduli of structures with dimensions less than 100 nm were measured to be less than the bulk value and the origin of the decrease is discussed in terms of dimension dependent properties and polymer degradation during fabrication. The polymer nanostructures also were determined to mechanically deform more readily with increasing characterization temperature.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    International Technology Roadmap for Semiconductors (ITRS) 2005 Ed. (Semicon. Indus. Ass., San Jose, CA 2005)Google Scholar
  2. 2.
    J.N. Helbert, T. Dack, Handbook of VLSI Microlithography, 2nd Ed. (Noyes/William Andrews, LLC, Norwich, NY 2001)Google Scholar
  3. 3.
    D. Bellet, L. Canham, Adv. Mater. 10, 487 (1998)CrossRefGoogle Scholar
  4. 4.
    T. Tanaka, M. Morigami, N. Atoda, J. Electrochem. Soc. 140, L115 (1993)CrossRefGoogle Scholar
  5. 5.
    T. Tanaka, M. Morigami, N. Atoda, Japan. J. Appl. Phys. 32, 6059 (1993)CrossRefADSGoogle Scholar
  6. 6.
    H.B. Cao, P.F. Nealey, W.D. Domke, J. Vac. Sci. Technol. B 18, 3303 (2000)CrossRefGoogle Scholar
  7. 7.
    M.P. Stoykovich, H.B. Cao, K. Yoshimoto, L.E. Ocola, P.F. Nealey, Adv. Mater. 15, 1180 (2003)CrossRefGoogle Scholar
  8. 8.
    K. Yoshimoto, M.P. Stoykovich, H.B. Cao, J.J. de Pablo, P.F. Nealey, W.J. Drugan, J. Appl. Phys. 96, 1857 (2004)CrossRefADSGoogle Scholar
  9. 9.
    H. Namatsu, K. Kurihara, M. Nagase, K. Iwadate, K. Murase, Appl. Phys. Lett. 66, 2655 (1995)CrossRefADSGoogle Scholar
  10. 10.
    J. Malzbender, J.M.J. den Toonder, A.R. Balkenende, G. de With, Mater. Sci. Eng. R 36, 47 (2002)CrossRefGoogle Scholar
  11. 11.
    G.M. Pharr, W.C. Oliver, MRS Bull. 7, 28 (1992)Google Scholar
  12. 12.
    J.M.G. Cowie, Polymers: Chemistry and Physics of Modern Materials, 2nd edn. (Chapman and Hall, Great Britain, 1991)Google Scholar
  13. 13.
    J.L. Keddie, R.A.L. Jones, R.A. Cory, Europhys. Lett. 27, 59 (1994)CrossRefGoogle Scholar
  14. 14.
    J.L. Keddie, R.A.L. Jones, R.A. Cory, Faraday Discuss. 98, 219 (1994)CrossRefGoogle Scholar
  15. 15.
    W.E. Wallace, J.H. van Zanten, W.L. Wu, Phys. Rev. E 52, R3329 (1995)CrossRefADSGoogle Scholar
  16. 16.
    J.A. Forrest, K. Dalnoki-Veress, J.R. Stevens, J.R. Dutcher, Phys. Rev. Lett. 77, 2002 (1996)CrossRefADSGoogle Scholar
  17. 17.
    J.A. Forrest, K. Dalnoki-Veress, J.R. Dutcher, Phys. Rev. E 56, 5705 (1997)CrossRefADSGoogle Scholar
  18. 18.
    J. Mattsson, J.A. Forrest, L. Böorjesson, Phys. Rev. E 62, 5187 (2000)CrossRefADSGoogle Scholar
  19. 19.
    D.S. Fryer, P.F. Nealey, J.J. de Pablo, Macromolecules 33, 6439 (2000)CrossRefGoogle Scholar
  20. 20.
    J.A. Torres, P.F. Nealey, J.J. de Pablo, Phys. Rev. Lett. 85, 3221 (2000)CrossRefADSGoogle Scholar
  21. 21.
    D.S. Fryer, R.D. Peters, E.J. Kim, J.E. Tomaszewski, J.J. de Pablo, P.F. Nealey, C.C. White, W.L. Wu, Macromolecules 34, 5627 (2001)CrossRefGoogle Scholar
  22. 22.
    R.S. Tate, D.S. Fryer, S. Pasqualini, M. Montague, J.J. de Pablo, P.F. Nealey, J. Chem. Phys. 115, 9982 (2001)CrossRefADSGoogle Scholar
  23. 23.
    T.S. Jain, J.J. de Pablo, J. Chem. Phys. 120, 9371 (2004)CrossRefADSGoogle Scholar
  24. 24.
    C.J. Ellison, J.M. Torkelson, Nature Mater. 2, 695 (2003)CrossRefADSGoogle Scholar
  25. 25.
    C.W. Frank, V. Rao, M.M. Despotopoulou, R.F.W. Pease, W.D. Hinsberg, R.D. Miller, J.F. Rabolt, Science 273, 912 (1996)CrossRefADSGoogle Scholar
  26. 26.
    D.B. Hall, J.M. Torkelson, Macromolecules 31, 8817 (1998)CrossRefGoogle Scholar
  27. 27.
    B. Frank, A.P. Gast, T.P. Russell, H.R. Brown, C.J. Hawker, Macromolecules 29, 6531 (1996)CrossRefGoogle Scholar
  28. 28.
    T.R. Böhme, J.J. de Pablo, J. Chem. Phys. 116, 9939 (2002)CrossRefADSGoogle Scholar
  29. 29.
    K. van Workum, J.J. de Pablo, Nano Lett. 3, 1405 (2003)CrossRefGoogle Scholar
  30. 30.
    K. Yoshimoto, T.S. Jain, P.F. Nealey, J.J. de Pablo, J. Chem. Phys. 122, 144712 (2005)CrossRefGoogle Scholar
  31. 31.
    C.M. Stafford, B.D. Vogt, C. Harrison, D. Julthongpiput, R. Huang, Macromolecules 39, 5095 (2006)CrossRefGoogle Scholar
  32. 32.
    B. Briscoe, L. Fiori, E. Pelillo, J. Phys. D 31, 2395 (1998)CrossRefADSGoogle Scholar
  33. 33.
    M. Radmacher, R.W. Tillmann, M. Fritz, H.E. Gaub, Science 257, 1900 (1992)CrossRefADSGoogle Scholar
  34. 34.
    C.G. Simon Jr., N. Eidelman, Y. Deng, N.R. Washburn, Macromol. Rapid Commun. 25, 2003 (2004)CrossRefGoogle Scholar
  35. 35.
    C.A. Tweedie, D.G. Anderson, R. Langer, K.J. Van Vliet, Adv. Mater. 17, 2599 (2005)CrossRefGoogle Scholar
  36. 36.
    A.G. Every, Meas. Sci. Technol. 13, R21 (2002)CrossRefADSGoogle Scholar
  37. 37.
    J.A. Forrest, K. Dalnoki-Veress, J.R. Dutcher, Phys. Rev. E 58, 6109 (1998)CrossRefADSGoogle Scholar
  38. 38.
    R. Hartschuh, Y. Ding, J.H. Roh, A. Kisliuk, A.P. Sokolov, C.L. Soles, R.L. Jones, T.J. Hu, W.L. Wu, A.P. Mahorowala, J. Polym. Sci. B Polym. Phys. 42, 1106 (2004)CrossRefGoogle Scholar
  39. 39.
    W. Cheng, G. Fytas, A.V. Kiyanova, M.Y. Efremov, P.F. Nealey, Macromol. Rapid Commun. 27, 702 (2006)CrossRefGoogle Scholar
  40. 40.
    R. Hotz, J.K. Krüger, W. Possart, R. Tadros-Morgane, J. Phys.: Condens. Matter 13, 7953 (2001)CrossRefADSGoogle Scholar
  41. 41.
    C.M. Stafford, C. Harrison, K.L. Beers, A. Karim, E.J. Amis, M.R. Vanlandingham, H.-C. Kim, W. Volksen, R.D. Miller, E.E. Simonyi, Nat. Mater. 3, 545 (2004)CrossRefADSGoogle Scholar
  42. 42.
    C.M. Stafford, S. Guo, C. Harrison, M.Y.M. Chang, Rev. Sci. Instrum. 76, 062207 (2005)CrossRefGoogle Scholar
  43. 43.
    H.D. Espinosa, B.C. Prorok, M. Fischer, J. Mech. Phys. Solids 51, 47 (2003)CrossRefGoogle Scholar
  44. 44.
    J.-H. Zhao, M. Kiene, C. Hu, P.S. Ho, Appl. Phys. Lett. 77, 2843 (2000)CrossRefADSGoogle Scholar
  45. 45.
    J.-H. Zhao, T. Ryan, P.S. Ho, A.J. McKerrow, W.-Y. Shih, J. Appl. Phys. 88, 3029 (2000)CrossRefADSGoogle Scholar
  46. 46.
    The 3D finite element modeling of the deformation of the test structure beams was performed using ANSYS 11 (ANSYS) for beams with H = 500 nm, BW = 100 nm, ΔPi = 4 MPa, and E = 5 GPa similar to the experimental PMMA beams.Google Scholar
  47. 47.
    W.M. Cheng, G.A. Miller, J.A. Manson, R.W. Hertzberg, L.H. Sperling, J. Mater. Sci. 25, 1917 (1990)CrossRefGoogle Scholar
  48. 48.
    J.A. Johnson, D.W. Jones, J. Mater. Sci. 29, 870 (1994)CrossRefGoogle Scholar
  49. 49.
    S.I. Naqui, I.M. Robinson, J. Mater. Sci. 28, 1421 (1993)CrossRefGoogle Scholar
  50. 50.
    M.E. James, Polymer Data Handbook (Oxford, New York, 1999)Google Scholar
  51. 51.
    R.S. Lakes, Viscoelastic Solids (CRC, Boca Raton, FL, 1999)Google Scholar
  52. 52.
    S.Y. Chou, P.R. Krauss, P.J. Renstrom, Appl. Phys. Lett. 67, 3114 (1995)CrossRefADSGoogle Scholar
  53. 53.
    S.Y. Chou, P.R. Krauss, P.J. Renstrom, Science 272, 85 (1996)CrossRefADSGoogle Scholar
  54. 54.
    C.J. Ellison, R.L. Ruszkowski, N.J. Fredin, J.M. Torkelson, Phys. Rev. Lett. 92, 095702 (2004)CrossRefADSGoogle Scholar
  55. 55.
    W.C. Hu, K. Sarveswaran, M. Lieberman, G.H. Bernstein, J. Vac. Sci. Technol. B 22, 1711 (2004)CrossRefGoogle Scholar
  56. 56.
    B.D. Gates, Q.B. Xu, M. Stewart, D. Ryan, C.G. Willson, G.M. Whitesides, Chem. Rev. 105, 1171 (2005)CrossRefGoogle Scholar
  57. 57.
    L.E. Ocola, D. Tennant, G. Timp, A. Novembre, J. Vac. Sci. Technol. B 17, 3164 (1999)CrossRefGoogle Scholar
  58. 58.
    F.J. Pantenburg, S. Achenbach, J. Mohr, J. Vac. Sci. Technol. B 16, 3547 (1998)CrossRefGoogle Scholar
  59. 59.
    M.J. Rooks, E. Kratschmer, R. Viswanathan, J. Katine, R.E. Fontana, S.A. MacDonald, J. Vac. Sci. Technol. B 20, 2937 (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.Department of Chemical and Biological Engineering and Center for NanoTechnologyUniversity of WisconsinMadisonUSA

Personalised recommendations