Skip to main content
Log in

Aligned array of N2-encapsulated multilevel branched carbon nanotubes

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Aligned arrays of N2-encapsulated multilevel branched carbon nanotubes were synthesized using a simple one step CVD method by pyrolysis of ferrocene and acetonitrile. Electron energy loss spectroscopy (EELS) and elemental mapping studies reveal that gaseous nitrogen was encapsulated in the carbon nanotubes. Batch-type pyrolysis of catalysts induced flow fluctuation of the reaction gases, resulting in the growth of branched junctions. Molecular nitrogen extruded rapidly along conical catalyst particles inducing N2 encapsulation inside the branched nanotubes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.M. Sze, Physics of Semiconductor Devices (Wiley, New York, 1981)

    Google Scholar 

  2. S. Reitzenstein, L. Worschech, P. Hartmann, M. Kamp, A. Forchel, Phys. Rev. Lett. 89, 226804 (2002)

    Article  ADS  Google Scholar 

  3. S. Ami, C. Joachim, Phys. Rev. B 65, 155419 (2002)

    Article  ADS  Google Scholar 

  4. A.M. Song, A. Lorke, A. Kriele, J.P. Kotthaus, W. Wegscheider, M. Bichler, Phys. Rev. Lett. 80, 3831 (1998)

    Article  ADS  Google Scholar 

  5. C. Papadopoulos, A. Rakitin, J. Li, A.S. Vedeneev, J.M. Xu, Phys. Rev. Lett. 85, 3476 (2000)

    Article  ADS  Google Scholar 

  6. A.G. Milnes, D.L. Feucht, Heterojunctions and Metal–Semiconductor junctions (Academic, New York, 1972)

    Google Scholar 

  7. A.N. Andriotis, M. Menon, D. Srivastava, L. Chemozatonskii, Phys. Rev. Lett. 87, 066802 (2001)

    Article  ADS  Google Scholar 

  8. S. Chen, B. Trauzettel, R. Egger, Phys. Rev. Lett. 89, 226404 (2002)

    Article  ADS  Google Scholar 

  9. V. Meunier, M.B. Nardelli, J. Bernholc, T. Zacharia, J.-C. Charlier, Appl. Phys. Lett. 81, 5234 (2002)

    Article  ADS  Google Scholar 

  10. A.N. Andriotis, M. Menon, D. Srivastava, L. Chemozatonskii, Appl. Phys. Lett. 79, 266 (2001)

    Article  ADS  Google Scholar 

  11. C. Papadopoulos, A.J. Yin, J.M. Xu, Appl. Phys. Lett. 85, 1769 (2004)

    Article  ADS  Google Scholar 

  12. P.R. Bandaru, C. Daraio, S. Jin, A.M. Rao, Nature Mater. 4, 663 (2005)

    Article  ADS  Google Scholar 

  13. M. Terrones, F. Banhart, N. Grobert, J.C. Charlier, H. Terrones, P.M. Ajayan, Phys. Rev. Lett. 89, 075505 (2002)

    Article  ADS  Google Scholar 

  14. D. Zhou, S. Seraphin, Chem. Phys. Lett. 238, 286 (1995)

    Article  ADS  Google Scholar 

  15. B.C. Satishkumar, P.J. Thomas, A. Govindaraj, C.R. Rao, Appl. Phys. Lett. 77, 2530 (2000)

    Article  ADS  Google Scholar 

  16. O.T. Heyning, P. Bernier, M. Glerup, Chem. Phys. Lett. 43, 409 (2005)

    Google Scholar 

  17. J.M. Ting, C.C. Chang, Appl. Phys. Lett. 80, 324 (2002)

    Article  ADS  Google Scholar 

  18. F.L. Deepak, A. Govindaraj, C.N.R. Rao, Chem. Phys. Lett. 345, 5 (2001)

    Article  Google Scholar 

  19. C.N.R. Rao, A. Govindaraj, Acc. Chem. Res. 35, 998 (2002)

    Article  Google Scholar 

  20. W.Z. Li, J.G. Wen, Z.F. Ren, Appl. Phys. Lett. 79, 1879 (2001)

    Article  ADS  Google Scholar 

  21. B. Gan, J. Ahn, A. Zhang, S.F. Yoon, Rusli, Q.F. Huang, H. Yang, M.B. Yu, W.Z. Li, Diam. Relat. Mater. 9, 897 (2000)

  22. S.H. Tsai, C.T. Shiu, W.J. Jong, H.C. Shih, Carbon 38, 1879 (2000)

    Article  Google Scholar 

  23. J. Li, C. Papadopoulos, J. Xu, Nature 402, 253 (1999)

    ADS  Google Scholar 

  24. N. Gothard, C. Daraio, J. Gaillard, R. Zidan, S. Jin, A.M. Rao, Nano. Lett. 4, 213 (2004)

    Article  Google Scholar 

  25. D.C. Wei, Y.Q. Liu, L.C. Cao, L. Fu, X.L. Li, Y. Wang, G. Yu, D.B. Zhu, Nano. Lett. 6, 186 (2006)

    Article  Google Scholar 

  26. M. Reyes-Reyes, N. Grobert, R. Kamalakaran, T. Seeger, D. Golberg, M. Ruhle, Y. Bando, H. Terrones, M. Terrones, Chem. Phys. Lett. 396, 167 (2004)

    Article  Google Scholar 

  27. J. Casanovas, J.M. Ricart, J. Rubio, F. Illas, J.M. Jimenez-Mateos, J. Am. Chem. Soc. 118, 8071 (1996)

    Article  Google Scholar 

  28. M. Terrones, H. Terrones, N. Grobert, W.K. Hsu, Y.Q. Zhu, Y.P. Hara, H.W. Kroto, D.R. Walton, P. Kohler-Redlich, M. Ruhle, J.P. Zhang, A.K. Cheetham, Appl. Phys. Lett. 75, 3932 (1999)

    Article  ADS  Google Scholar 

  29. R. Che, L.-M. Peng, Q. Chen, X.F. Duan, Z.N. Gu, Appl. Phys. Lett. 82, 3319 (2003)

    Article  ADS  Google Scholar 

  30. F. Banhart, Rep. Prog. Phys. 62, 1181 (1999)

    Article  ADS  Google Scholar 

  31. D. Ugarte, Nature 359, 707 (1992)

    Article  ADS  Google Scholar 

  32. B.W. Smith, M. Monthioux, D.E. Luzzi, Nature 396, 323 (1998)

    Article  ADS  Google Scholar 

  33. Y. Zhang, S. Iijima, Philos. Mag. Lett. 80, 427 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Su.

Additional information

PACS

07.78.+s; 61.46.+w; 81.07.De; 81.15.Gh

Rights and permissions

Reprints and permissions

About this article

Cite this article

Su, J., Yu, Y. & Che, R. Aligned array of N2-encapsulated multilevel branched carbon nanotubes. Appl. Phys. A 90, 135–139 (2008). https://doi.org/10.1007/s00339-007-4229-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-007-4229-9

Keywords

Navigation