Skip to main content
Log in

Transport in Nb-InAs structures: from phase coherence to the edge state regime

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

We investigated transport in Nb-InAs hybrid structures in perpendicular magnetic fields up to the quantum Hall regime. Due to the high contact quality of our samples, Andreev reflection dominates the transport properties in a range of experimental parameters. Our experiments were performed on periodic arrays of Nb filled stripes or antidots in an InAs-based 2DEG. According to geometry and field strength we observe the following effects: At low fields, up to a few flux quanta per unit cell, we find phase-coherent behavior, such as flux-periodic oscillations. At slightly higher fields, the Andreev reflection probability is determined by induced superconductivity in the 2DEG, which is gradually suppressed by an increasing magnetic field. In the arrays of Nb filled antidots we find that the commensurability peaks are suppressed since Andreev reflection restores regular motion in velocity space. Due to the high critical field of the Nb nanostructures, we can also enter the edge state regime, where we observe a pronounced increase of the amplitude of 1/B-periodic magnetoresistance oscillations. The latter can be traced to an enhanced backscattering of Andreev-reflected edge channels, which contain both electrons and holes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Ando, Y. Arakawa, K. Furuya, S. Komiyama, H. Nakashima, Mesoscopic Physics and Electronics (Springer, Berlin Heidelberg New York, 1998)

    Google Scholar 

  2. S. Datta, Electronic Transport in Mesoscopic Systems (Cambridge University Press, Cambridge, 1995)

    Google Scholar 

  3. A.F. Andreev, Sov. Phys. J. Exp. Theor. Phys. 19, 1228 (1964) [Zh. Eksp. Teor. Fiz. 46, 1823 (1964)]

  4. P.G. de Gennes, Superconductivity of Metals and Alloys (W.A. Benjamin, New York, 1966)

    MATH  Google Scholar 

  5. I. Kosztin, D.L. Maslov, P.M. Goldbart, Phys. Rev. Lett. 75, 1735 (1995)

    Article  ADS  Google Scholar 

  6. T. Schäpers, Superconductor/Semiconductor Junctions (Springer, Berlin Heidelberg New York, 2001)

    Google Scholar 

  7. A.F. Morpurgo, S. Holl, B.J. van Wees, T.M. Klapwijk, G. Borghs, Phys. Rev. Lett. 78, 2636 (1997)

    Article  ADS  Google Scholar 

  8. H. Takayanagi, T. Kawakami, Phys. Rev. Lett. 54, 2449 (1985)

    Article  ADS  Google Scholar 

  9. Y.-J. Doh, J.A. van Dam, A.L. Roest, E.P.A.M. Bakkers, L.P. Kouwenhoven, S. De Franceschi, Science 309, 272 (2005)

    Article  ADS  Google Scholar 

  10. P. Recher, E.V. Sukhorukhov, D. Loss, Phys. Rev. B 63, 165314 (2001)

    Article  ADS  Google Scholar 

  11. J.A. Melsen, P.W. Brouwer, K.M. Frahm, C.W.J. Beenakker, Europhys. Lett. 35, 7 (1996)

    Article  ADS  Google Scholar 

  12. W. Ihra, M. Leadbeater, J.L. Vega, K. Richter, Eur. Phys. J. B 21, 425 (2001)

    Article  MathSciNet  ADS  Google Scholar 

  13. D. Weiss, M.L. Roukes, A. Menschig, P. Grambow, K. von Klitzing, G. Weimann, Phys. Rev. Lett. 66, 2790 (1991)

    Article  ADS  Google Scholar 

  14. R. Fleischmann, T. Geisel, R. Ketzmerick, Phys. Rev. Lett. 68, 1367 (1992)

    Article  ADS  Google Scholar 

  15. R. Onderka, M. Suhrke, U. Rössler, Phys. Rev. B 62, 10918 (2000)

    Article  ADS  Google Scholar 

  16. J. Eroms, D. Weiss, J. de Boeck, G. Borghs, Physica C 352, 131 (2001)

    Article  ADS  Google Scholar 

  17. J. Eroms, D. Weiss, M. Tolkiehn, U. Rössler, J. De Boeck, G. Borghs, Physica E 12, 918 (2002)

    Article  ADS  Google Scholar 

  18. J. Eroms, Europhys. Lett. 58, 569 (2002)

    Article  ADS  Google Scholar 

  19. H. Takayanagi, J. Nitta (Eds.), in: Towards the Controllable Quantum States (World Scientific, Singapore, 2003)

  20. J. Eroms, D. Weiss, J. De Boeck, G. Borghs, U. Zülicke, Phys. Rev. Lett. 95, 107001 (2005)

    Article  ADS  Google Scholar 

  21. T. Kawakami, H. Takayanagi, Appl. Phys. Lett. 46, 92 (1985)

    Article  ADS  Google Scholar 

  22. C. Nguyen, H. Kroemer, E.L. Hu, Phys. Rev. Lett. 69, 2847 (1992)

    Article  ADS  Google Scholar 

  23. M. Behet, S. Nemeth, J. De Boeck, G. Borghs, J. Tümmler, J. Woitok, J. Geurts, Semicond. Sci. Technol. 13, 428 (1998)

    Article  ADS  Google Scholar 

  24. M. Octavio, M. Tinkham, G.E. Blonder, T.M. Klapwijk, Phys. Rev. B 27, 6739 (1983)

    Article  ADS  Google Scholar 

  25. K. Flensberg, J. Bindslev Hansen, M. Octavio, Phys. Rev. B 38, 8707 (1988)

    Article  ADS  Google Scholar 

  26. A. Chrestin, T. Matsuyama, U. Merkt, Phys. Rev. B 55, 8457 (1997)

    Article  ADS  Google Scholar 

  27. A.F. Volkov, P.H.C. Magnée, B.J. van Wees, T.M. Klapwijk, Physica C 242, 261 (1995)

    Article  ADS  Google Scholar 

  28. M. Tinkham, Introdution to Superconductivity (Dover, New York, 1996), p. 234

    Google Scholar 

  29. R.F. Voss, R.A. Webb, Phys. Rev. B 25, 3446 (1982)

    Article  ADS  Google Scholar 

  30. R.A. Webb, R.F. Voss, G. Grinstein, P.M. Horn, Phys. Rev. Lett. 51, 690 (1983)

    Article  ADS  Google Scholar 

  31. J. Eroms, M. Zitzlsperger, D. Weiss, J. Smet, C. Albrecht, R. Fleischmann, M. Behet, J. De Boeck, G. Borghs, Phys. Rev. B 59, 7829 (1999)

    Article  ADS  Google Scholar 

  32. G. Tkachov, K. Richter, Phys. Rev. B 71, 094517 (2005)

    Article  ADS  Google Scholar 

  33. H. Hoppe, U. Zülicke, G. Schön, Phys. Rev. Lett. 84, 1804 (2000)

    Article  ADS  Google Scholar 

  34. U. Zülicke, H. Hoppe, G. Schön, Physica B 298, 453 (2001)

    Article  ADS  Google Scholar 

  35. H. Takayanagi, T. Akazaki, Physica B 249251, 462 (1998)

  36. I.E. Batov, T. Schäpers, A.A. Golubov, A.V. Ustinov, J. Appl. Phys. 96, 3366 (2004)

    Article  ADS  Google Scholar 

  37. T. Ando, A.B. Fowler, F. Stern, Rev. Mod. Phys. 54, 437 (1982)

    Article  ADS  Google Scholar 

  38. C. Gauer, J. Scriba, A. Wixforth, J.P. Kotthaus, C.R. Bolognesi, C. Nguyen, B. Brar, H. Kroemer, Semicond. Sci. Technol. 9, 1580 (1994)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Eroms.

Additional information

PACS

74.45.+c; 73.43.Qt; 73.63.-b

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eroms, J., Weiss, D. Transport in Nb-InAs structures: from phase coherence to the edge state regime. Appl. Phys. A 89, 639–644 (2007). https://doi.org/10.1007/s00339-007-4192-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-007-4192-5

Keywords

Navigation