Skip to main content
Log in

Manipulating superconductivity in perpendicularly magnetized FSF triple layers

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

We investigate the superconducting transition temperature Tc of epitaxial ferromagnet/superconductor/ferromagnet (FSF) triple layers with perpendicular magnetic anisotropy. Due to the different coercive fields of the top and bottom F layers (F=[Co/Pt] multilayer) different magnetized states can be achieved: a fully magnetized state where the F layer magnetizations are parallel oriented, a state DM where one layer is demagnetized, and a state DD where both layers are demagnetized. Tc is maximum in the fully magnetized state and decreases consecutively from the DM to the DD state due to the different contributions from magnetic stray fields originating from the domain walls present in the demagnetized layers. The role of the proximity effect and the effect of the stray fields on the superconductivity in the S layer can be distinguished by analyzing the temperature dependence of the upper critical field and by comparison with data taken on an FISIF multilayer where I is an insulating SiO2 barrier. Hence, we demonstrate that Tc can be manipulated by the intentional creation of different stray-field configurations in the F layers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.I. Buzdin, Rev. Mod. Phys. 77, 935 (2005)

    Article  ADS  Google Scholar 

  2. F.S. Bergeret, A.F. Volkov, K.B. Efetov, Rev. Mod. Phys. 77, 1321 (2005)

    Article  ADS  Google Scholar 

  3. L.R. Tagirov, Phys. Rev. Lett. 83, 2058 (1999)

    Article  ADS  Google Scholar 

  4. A.I. Buzdin, A.V. Vedyayev, N.V. Ryzhanova, Europhys. Lett. 48, 686 (1999)

    Article  ADS  Google Scholar 

  5. J.Y. Gu, C.Y. You, J.S. Jiang, J. Pearson, Ya.B. Bazaliy, S.D. Bader, Phys. Rev. Lett. 89, 267001 (2002)

    Google Scholar 

  6. T. Yamashita, H. Imamura, S. Takahashi, S. Maekawa, Phys. Rev. B 67, 094515 (2006)

    Article  Google Scholar 

  7. V. Peña, Z. Sefrioui, D. Arias, C. Leon, J. Santamaria, J.L. Martinez, S.G.E. teVelthuis, A. Hoffmann, Phys. Rev. Lett. 94, 057002 (2005)

    Article  ADS  Google Scholar 

  8. A.Y. Rusanov, S. Habraken, J. Aarts, Phys. Rev. B 73, 060505(R) (2006)

  9. I.C. Moraru, W.P. Pratt, N.O. Birge, Phys. Rev. B 74, 220507(R) (2006)

  10. A.Y. Rusanov, M. Hesselberth, J. Aarts, A.I. Buzdin, Phys. Rev. Lett. 93, 057002 (2004)

    Article  ADS  Google Scholar 

  11. W. Gillijns, A.Y. Aladyshkin, M. Lange, M.J. Van Bael, V.V. Moshchalkov, Phys. Rev. Lett. 93, 227003 (2005)

    Article  ADS  Google Scholar 

  12. C. Bell, S. Turşucu, J. Aarts, cond-mat/0610667 (2006)

  13. M.T. Johnson, P.J.H. Bloemen, F.J.A. den Broeder, J.J. De Vries, Rep. Prog. Phys. 59, 1409 (1996)

    Article  ADS  Google Scholar 

  14. J. Fritzsche, V.V. Moshchalkov, H. Eitel, D. Koelle, R. Kleiner, R. Szymczak, Phys. Rev. Lett. 96, 247003 (2006)

    Article  ADS  Google Scholar 

  15. A.Y. Aladyshkin, A.I. Buzdin, A.A. Fraerman, A.S. Mel’nikov, D.A. Ryzhov, A.V. Sokolov, Phys. Rev. B 68, 184508 (2003)

    Article  ADS  Google Scholar 

  16. E. Bauer, J.H. van der Merwe, Phys. Rev. B 33, 3657 (1986)

    Article  ADS  Google Scholar 

  17. S. Singh, S. Basu, M. Vedpathak, R.H. Kodama, R. Chitra, Y. Goud, Appl. Surf. Sci. 240, 251 (2005)

    Article  ADS  Google Scholar 

  18. A. Singh, C. Sürgers, H. v. Löhneysen, Phys. Rev. B 75, 024513 (2007)

    Article  ADS  Google Scholar 

  19. V.A. Vas’ko, V.A. Larkin, P.A. Kraus, K.R. Nikolaev, D.E. Grupp, C.A. Nordman, A.M. Goldman, Phys. Rev. Lett. 78, 1134 (1997)

    Article  ADS  Google Scholar 

  20. C.C. Fu, Z. Huang, N.C. Yeh, Phys. Rev. B 65, 224516 (2202)

    Article  Google Scholar 

  21. L. Fratila, I. Maurin, C. Dubourdieu, J.C. Villegier, Appl. Phys. Lett. 86, 122505 (2005)

    Article  ADS  Google Scholar 

  22. R.J. Soulen, M.S. Osofsky, B. Nodgorny, T. Ambrose, P. Broussard, S.F. Chang, J. Byers, C.T. Tanaka, J. Nowack, J.S. Moodera, G. Laprade, A. Baryy, M.D. Coey, J. Appl. Phys. 85, 4589 (1999)

    Article  ADS  Google Scholar 

  23. R. Steiner, P. Ziemann, Phys. Rev. B 74, 094504 (2006)

    Article  ADS  Google Scholar 

  24. Z. Radović, L. Dobrosavljević-Grujić, A.I. Buzdin, J.R. Clem, Phys. Rev. B 38, 2388 (1988)

    Article  ADS  Google Scholar 

  25. H.W. Weber, E. Seidl, C. Laa, E. Schachinger, M. Prohammer, A. Junod, D. Eckert, Phys. Rev. B 44, 7485 (1991)

    ADS  Google Scholar 

  26. M. Lange, M.J. Van Bael, V.V. Moshchalkov, Phys. Rev. B 68, 174522 (2003)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Sürgers.

Additional information

PACS

68.55.JK; 74.45.+c; 74.78.Db; 74.78.Fk; 75.47.-m

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, A., Sürgers, C., Uhlarz, M. et al. Manipulating superconductivity in perpendicularly magnetized FSF triple layers. Appl. Phys. A 89, 593–597 (2007). https://doi.org/10.1007/s00339-007-4186-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-007-4186-3

Keywords

Navigation