Skip to main content
Log in

Influence of boron distribution on the transport of single-walled carbon nanotube

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Using density functional theory combined with nonequilibrium Green’s functions, we investigated and found that boron substitutional doping affects the transport properties of single-walled carbon nanotubes with different distribution. The results reveal that the semiconducting nanotube transits to the quasi-metallic state with nonlinear current–voltage curve after boron doping. Some regular regions of total transmission coefficient with integral values appear with the varying of electron energy and bias voltage. The transport properties of the doped tubes are affected remarkably by the impurity states of quasi-bound defect states which are tuned by the distance between the boron atoms. The current of metallic nanotube is reduced by the impurities and changed with doping patterns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.-Y. Yi, J. Bernholc, Phys. Rev. B 47, 1708 (1993)

    Article  ADS  Google Scholar 

  2. H. Amara, J.-P. Gaspard, C. Bichara, T. Cours, G. Hug, A. Loiseau, F. Ducastell, AIP Conf. Proc. 685, 402 (2003)

    Article  Google Scholar 

  3. G.G. Fuentes, E. Borowiak Palen, T. Pichler, X. Liu, A. Graff, G. Behr, R.J. Kalenczuk, M. Knupfer, J. Fink, Phys. Rev. B 67, 035429 (2003)

    Article  ADS  Google Scholar 

  4. W.H. Xu, T. Kyotani, B.K. Pradhan, T. Nakajima, A. Tomita, Adv. Mater. 15, 1087 (2003)

    Article  Google Scholar 

  5. Q.H. Yang, W.H. Xu, A. Tomita, T. Kyotani, Chem. Mater. 11, 2940 (2005)

    Article  Google Scholar 

  6. M. Terrones, Int. Mater. Rev. 49, 325 (2004)

    Google Scholar 

  7. M. Endo, H. Muramatsu, T. Hayashi, Y. Ahm Kim, G. Van Lier, J.C. Charlier, H. Terrones, M. Terrones, M.S. Dresselhaus, Nano Lett. 5, 1099 (2005)

    Article  Google Scholar 

  8. O.B. Malcioğlu, E. Tasci, S. Erkoc, Physica E 28, 296 (2005)

    Article  ADS  Google Scholar 

  9. W.H. Moon, H.J. Hwang, Physica E 28, 419 (2005)

    ADS  Google Scholar 

  10. J.L. Blackburn, Y. Yan, C. Engtrakul, P.A. Parilla, K. Jones, T. Gennett, A.C. Dillon, M.J. Heben, Chem. Mater. 18, 2558 (2006)

    Article  Google Scholar 

  11. D. Golberg, Y. Bando, K. Kurashima, T. Sato, Diam. Relat. Struct. 10, 63 (2001)

    Google Scholar 

  12. P.L. Gai, O. Stephan, K. McGuire, A.M. Rao, M.S. Dresselhaus, G. Dresselhaus, C. Colliex, J. Mater. Chem. 14, 669 (2004)

    Article  Google Scholar 

  13. K. McGuire, N. Gothard, P.L. Gai, M. S Dresselhaus, G. Sumanasekera, A.M. Rao, Carbon 43, 219 (2005)

    Article  Google Scholar 

  14. D. Golberg, Y. Bando, W. Han, K. Kurashima, T. Sato, Chem. Phys. Lett. 308, 337 (1999)

    Article  Google Scholar 

  15. W.K. Hsu, S.Y. Chu, E. Munoz Picone, J.L. Boldu, S. Firth, P. Franchi, B. Roberts, A. Schilder, H. Terrones, N. Grobert, Y.Q. Zhu, M. Terrones, M.E. McHenry, H.W. Kroto, D.R.M. Walton, Chem. Phys. Lett. 323, 572 (2000)

    Article  Google Scholar 

  16. R. Seshadri, H.N. Aiyer, A. Govindaraj, C.N.R. Rao, Solid State Commun. 91, 195 (1994)

    Article  Google Scholar 

  17. A.P. Ramirez, R.C. Haddon, O. Zhou, R.M. Fleming, J. Zhang, S.M. McClure, R.E. Smalley, Science 265, 84 (1994)

    Article  ADS  Google Scholar 

  18. L.J. Li, M. Glerup, A.N. Khlobystov, J.G. Wiltshire, J.L. Sauvajo, R.A. Taylor, R.J. Nicholas, Carbon 44, 2752 (2006)

    Article  Google Scholar 

  19. Z. Zhou, X. Gao, J. Yan, D. Song, M. Morinaga, Carbon 42, 2677 (2004)

    Article  Google Scholar 

  20. S. Shiraishi, M. Kibe, T. Yokoyama, H. Kurihara, N. Patel, A. Oya, Y. Kaburagi, Y. Hishiyama, Appl. Phys. A 82, 585 (2006)

    Article  ADS  Google Scholar 

  21. P.C.P. Watts, W.K. Hsu, G.Z. Chen, D.J. Fray, H.W. Kroto, D.R.M. Walton, J. Mater. Chem. 11, 2482 (2001)

    Article  Google Scholar 

  22. R. Czerw, P.W. Chiu, Y.M. Choi, D.S. Lee, D.L. Carroll, S. Roth, Curr. Appl. Phys. 2, 473 (2002)

    Article  Google Scholar 

  23. D. Golberg, Y. Bando, L. Bourgeois, K. Kurashima, T. Sato, Carbon 38, 2017 (2000)

    Article  Google Scholar 

  24. R.G. Parr, W. Yang, Density-Functional Theory of Atoms Molecules (Oxford Univ., New York, 1989)

    Google Scholar 

  25. S. Datta, Electronic Transport in Mesoscopic Systems (Cambridge University Press, New York, 1995)

    Google Scholar 

  26. J. Taylor, H. Guo, J. Wang, Phys. Rev. B 63, 121104 (2001)

    Article  ADS  Google Scholar 

  27. J. Taylor, H. Guo, J. Wang, Phys. Rev. B 63, 245407 (2001)

    Article  ADS  Google Scholar 

  28. M. Brandbyge, J.-L. Mozos, P. Ordejón, J. Taylor, K. Stokbro, Phys. Rev. B 65, 165401 (2002)

    Article  ADS  Google Scholar 

  29. H.J. Choi, J. Ihm, S.G. Louie, M.L. Cohen, Phys. Rev. Lett. 84, 29120 (2000)

    Google Scholar 

  30. C.C. Kaun, B. Larade, H. Mehrez, J. Taylor, H. Guo, Phys. Rev. B 65, 205416 (2002)

    Article  ADS  Google Scholar 

  31. A.A. Farajian, K. Esfarjani, Y. Kawazoe, Phys. Rev. Lett. 82, 5084 (1999)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H.-F. Hu.

Additional information

PACS

72.80.Rj; 73.22.2f; 73.61.Wp; 73.63.Rt

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wei, JW., Hu, HF., Zeng, H. et al. Influence of boron distribution on the transport of single-walled carbon nanotube. Appl. Phys. A 89, 789–792 (2007). https://doi.org/10.1007/s00339-007-4176-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-007-4176-5

Keywords

Navigation