Skip to main content
Log in

The influence of rf plasma time on the carbonitriding treatment of titanium

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Inductively coupled radio frequency plasma surface treatment was applied to commercially pure titanium sheets. The goal was to increase the efficiency of the carbonitriding process, i.e., to decrease the plasma treatment time to a few tens of minutes instead of several hours. The effects of different plasma-processing times on the microstructure and mechanical properties of plasma-carbonitrided Ti were examined. The characteristics of the carbonitrided layer were investigated by microhardness testing, surface roughness measurements, optical microscopy and X-ray diffraction. The surface microhardness and the thickness of the compound layer of carbonitrided Ti increase with the plasma-processing time. Surface energy, yield strength and Young’s modulus for carbonitrided titanium were calculated from the Vickers microhardness data. An attempt was made to interpret the high carbonitriding rate and the high microhardness values of carbonitrided titanium with respect to previously published results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K.G. Budinski, Wear 151, 203 (1991)

    Article  Google Scholar 

  2. F. Borgioli, E. Galvanetto, A. Fossati, G. Pradelli, Surf. Coat. Technol. 184, 255 (2004)

    Article  Google Scholar 

  3. H. Conrad, Prog. Mater. Sci. 26, 123 (1982)

    Article  Google Scholar 

  4. A. Bloyce, P.H. Morton, T. Bell, in: ASM Handbook, vol. 5 (ASM International, Materials Park, OH, USA, 1994), p. 835

  5. T. Wierzchon, J. Rudnicki, M. Hering, R. Niedbala, Vacuum 48, 499 (1997)

    Article  Google Scholar 

  6. T. Ishigaki, H. Haneda, N. Okada, S. Ito, Thin Solid Films 390, 20 (2001)

    Article  Google Scholar 

  7. A. Korhonen, E.I. Meletis, A. Erdemir, G.R. Fenske, Surf. Coat. Technol. 73, 39 (1995)

    Article  Google Scholar 

  8. F.M. El-Hossary, N.Z. Negm, S.M. Khalil, M. Raaif, Appl. Surf. Sci. 239, 142 (2005)

    Article  ADS  Google Scholar 

  9. F.M. El-Hossary, N.Z. Negm, S.M. Khalil, M. Raaif, Thin Solid Films 497, 196 (2006)

    Article  Google Scholar 

  10. S.Y. Wang, P.K. Chu, B.Y. Tang, X.C. Zeng, Y.B. Chen, X.F. Wang, Surf. Coat. Technol. 93, 309 (1997)

    Article  Google Scholar 

  11. F. El-Hossary, N.Z. Negm, S.M. Khalil, A.M.A. Elrahman, Thin Solid Film 405, 179 (2002)

    Google Scholar 

  12. F.J. Gil, R. Canedo, A. Padros, E. Sada, J. Biomater. Appl. 17, 31 (2002)

    Google Scholar 

  13. V.M. Fedirko, I.M. Pogrelyuk, Sov. Mater. Sci. 26, 559 (1990)

    Google Scholar 

  14. B.S. Yllbas, A.Z. Sahin, A.Z. Al-Garni, S.A.M. Said, Z. Ahmed, B.J. Abdulaleem, M. Sami, Surf. Coat. Technol. 80, 287 (1996)

    Article  Google Scholar 

  15. E. Czarnowska, T. Wierzchon, A. Maranda-Niedbata, E. Karczmarewicz, J. Mater. Sci. 11, 73 (1999)

    Google Scholar 

  16. F. Fröhlich, P. Grau, W. Grellmann, Phys. Stat. Solidi A 42, 79 (1977)

    Article  Google Scholar 

  17. G.H. Frischat, in: Strength of Inorganic Glass, ed. by C.R. Kurkjian (Plenum Press, New York, 1985), p. 135

  18. K. Hirao, M. Tomozawa, J. Am. Ceram. Soc. 70, 497 (1987)

    Article  Google Scholar 

  19. K.L. Johnson, J. Mech. Phys. Solids 18, 115 (1970)

  20. B. Jonsson, S. Hogmark, Thin Solids Films 114, 257 (1984)

    Google Scholar 

  21. PDI Webmaster, November 30 (2000), Surface Metallurgy Guide. http://www.predev.com/smg/parameters.htm

  22. C. Blawert, A. Weisheit, B.L. Mordike, F.M. Knoop, Surf. Coat. Technol. 85, 15 (1996)

    Article  Google Scholar 

  23. A. Wennerberg, C. Hallgren, C. Johansson, S.A. Danelli, Clin. Oral Implants 9, 11 (1998)

    Google Scholar 

  24. A. Wennerberg, T. Albrektsson, B. Albrektsson, J.J. Krol, Clin. Oral Implant. 6, 24 (1996)

    Google Scholar 

  25. S. Hansson, M. Norton, J. Biomech. 32, 829 (1999)

    Google Scholar 

  26. D.L. Cochran, R.K. Schenk, A. Lussi, F.L. Higginbottom, D. Buser, J. Biomed. Mater. 40, 1 (1998)

    Google Scholar 

  27. M. Esposito, P. Coulthard, P. Thomsen, H.V. Worthington, Cochrane Database Syst Rev 2005:25:CD003815

  28. D.P. Shashkov, Metallovedenie i Termicheskaya Obrabotka Metallov 6, 20 (2001)

    Google Scholar 

  29. T.M. Muraleedharm, E.I. Meletics, Thin Solid Films 221, 104 (1992)

    Article  Google Scholar 

  30. J. Mizera, R.Y. Fillit, T. Wierzchon, J. Mater. Sci. Lett. 17, 1291 (1998)

    Article  Google Scholar 

  31. F. El-Hossary, Surf. Coat. Technol. 150, 177 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Raaif.

Additional information

PACS

81.65.Lp; 82.33.Xj; 52.77.-j; 61.10.Nz; 62.20.-x

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raaif, M., El-Hossary, F., Negm, N. et al. The influence of rf plasma time on the carbonitriding treatment of titanium. Appl. Phys. A 89, 467–474 (2007). https://doi.org/10.1007/s00339-007-4168-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-007-4168-5

Keywords

Navigation