Skip to main content
Log in

Fabrication of needle-like ZnO nanorods arrays by a low-temperature seed-layer growth approach in solution

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Uniform, large-scale, and well-aligned needle-like ZnO nanorods with good photoluminescence and photocatalysis properties on Zn substrates, have been successfully fabricated using a simple low-temperature seed-layer growth approach in solution (50 °C). The formation of ZnO seed-layer by the anodic oxidation technique (AOT) plays an important role in the subsequent growth of highly oriented ZnO nanorods arrays. Temperature also proved to be a significant factor in the growth of ZnO nanorods and had a great effect on their optical properties. X-ray diffraction (XRD) analysis, selected-area electron diffraction (SAED) pattern and high-resolution TEM (HRTEM) indicated that the needle-like ZnO nanorods were single crystal in nature and that they had grown up preferentially along the [0001] direction. The well-aligned ZnO nanorods arrays on Zn substrates exhibited strong UV emission at around 380 nm at room temperature. To investigate their potential as photocatalysts, degradation of pentachlorophenol (PCP) in aqueous solution was carried out using photocatalytic processes, with comparison to direct photolysis. After 1 h, the degradation efficiencies of PCP by direct photolysis and photocatalytic processes achieved 57% and 76% under given experimental conditions, respectively. This improved degradation efficiency of PCP illustrates that ZnO nanorods arrays on Zn substrates have good photocatalytic activity. This simple low-temperature seed-layer growth approach in solution resulted in the development of an effective and low-cost fabrication process for high-quality ZnO nanorods arrays with good optical and photocatalytic properties that can be applicable in many fields such as photocatalysis, photovoltaic cells, luminescent sensors, and photoconductive sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, P. Yang, Science 292, 1897 (2001)

    Article  ADS  Google Scholar 

  2. M. Zamfirescu, A. Kavokin, B. Gil, G. Malpuech, M. Kaliteevski, Phys. Rev. B 65, 161205/1 (2002)

    Google Scholar 

  3. C.J. Lee, T.J. Lee, S.C. Lyu, Y. Zhang, H. Ruh, H.J. Lee, Appl. Phys. Lett. 81, 3648 (2002)

    Article  ADS  Google Scholar 

  4. E. Comini, G. Faglia, G. Sberveglieri, Z.W. Pan, Z.L. Wang, Appl. Phys. Lett. 81, 1869 (2002)

    Article  ADS  Google Scholar 

  5. W.I. Park, G.-C. Yi, Adv. Mater. 16, 87 (2004)

    Article  Google Scholar 

  6. J. Goldberger, D.J. Sirbuly, M. Law, P. Yang, J. Phys. Chem. B 109, 9 (2005)

    Article  Google Scholar 

  7. W.I. Park, J.S. Kim, G.-C. Yi, H.-J. Lee, Adv. Mater. 17, 1393 (2005)

    Article  Google Scholar 

  8. J.-H. Choy, E.-S. Jang, J.-H. Won, J.-H. Chung, D.-J. Jang, Y.-W. Kim, Adv. Mater. 15, 1911 (2003)

    Article  Google Scholar 

  9. Z. Fan, J.G. Lu, Appl. Phys. Lett. 86, 123510/1 (2005)

    Google Scholar 

  10. J.B. Baxter, E.S. Aydil, Appl. Phys. Lett. 86, 053114/1 (2005)

    Google Scholar 

  11. C. Levy-Clement, R. Tena-Zaera, M.A. Ryan, A. Katty, G. Hodes, Adv. Mater. 17, 1512 (2005)

    Article  Google Scholar 

  12. J.H. Song, X.D. Wang, E. Riedo, Z.L. Wang, J. Phys. Chem. B 109, 9869 (2005)

    Article  Google Scholar 

  13. J.B. Cui, U.J. Gibson, J. Phys. Chem. B 109, 22074 (2005)

    Article  Google Scholar 

  14. C. Borchers, S. Miiller, D. Stichtenoth, D. Schwen, C. Ronning, J. Phys. Chem. B 110, 1656 (2006)

    Article  Google Scholar 

  15. J.Q. Hu, Q. Li, X.M. Meng, C.S. Lee, S.T. Lee, Chem. Mater. 15, 305 (2003)

    Article  Google Scholar 

  16. H.D. Yu, Z.P. Zhang, M.Y. Han, X.T. Hao, F.R. Zhu, J. Am. Chem. Soc. 127, 2378 (2005)

    Article  Google Scholar 

  17. Y. Sun, G.M. Fuge, N.A. Fox, D.J. Riley, M.N.R. Ashfold, Adv. Mater. 17, 2477 (2005)

    Article  Google Scholar 

  18. Y. Tak, K. Yong, J. Phys. Chem. B 109, 19263 (2005)

    Article  Google Scholar 

  19. Q.C. Li, V. Kumar, Y. Li, H.T. Zhang, T.J. Marks, R.P.H. Chang, Chem. Mater. 17, 1001 (2005)

    Article  Google Scholar 

  20. X.M. Sun, Z.X. Deng, Y.D. Li, Mater. Chem. Phys. 80, 366 (2003)

    Article  Google Scholar 

  21. Z.L. Wang, X.Y. Kong, J.M. Zuo, Phys. Rev. Lett. 91, 185502/1 (2003)

    Google Scholar 

  22. Q. Wan, K. Yu, T.H. Wang, C.L. Lin, Appl. Phys. Lett. 83, 2253 (2003)

    Article  ADS  Google Scholar 

  23. X.Y. Kong, Y. Ding, Z.L. Wang, J. Phys. Chem. B 108, 570 (2004)

    Article  Google Scholar 

  24. X.H. Sun, S. Lam, T.K. Sham, F. Heigl, A. Jürgensen, N.B. Wong, J. Phys. Chem. B 109, 3120 (2005)

    Article  Google Scholar 

  25. R.B. Peterson, C.L. Fields, B.A. Gregg, Langmuir 20, 5114 (2004)

    Article  Google Scholar 

  26. Z. Wang, X.F. Qian, J. Yin, Z.K. Zhu, Langmuir 20, 3441 (2004)

    Article  Google Scholar 

  27. M. Kawakami, A.B. Hartanto, Y. Nakata, T. Okada, Japan. J. Appl. Phys. 42, L33 (2003)

    Article  ADS  Google Scholar 

  28. W.I. Park, G.C. Yi, M. Kim, S.J. Pennycook, Adv. Mater. 14, 1841 (2002)

    Article  Google Scholar 

  29. P. Yang, H. Yan, S. Mao, R. Russo, J. Johnson, R. Saykally, N. Morris, J. Pham, R. He, H. Choi, Adv. Funct. Mater. 12, 323 (2002)

    Article  Google Scholar 

  30. B. Liu, H.C. Zeng, J. Am. Chem. Soc. 125, 4430 (2003)

    Article  Google Scholar 

  31. C. Pacholski, A. Kornowski, H. Weller, Angew. Chem. Int. Edit. 41, 1188 (2002)

    Article  Google Scholar 

  32. X. Feng, L. Feng, M. Jin, J. Zhai, L. Jiang, D. Zhu, J. Am. Chem. Soc. 126, 62 (2004)

    Article  Google Scholar 

  33. L.E. Greene, M. Law, J. Goldberger, F. Kim, J.C. Johnson, Y. Zhang, R.J. Saykally, P. Yang, Angew. Chem. Int. Edit. 42, 3031 (2003)

    Article  Google Scholar 

  34. M.R. Hoffmann, S.T. Martin, W. Choi, D.W. Bahnemann, Chem. Rev. 95, 69 (1995)

    Article  Google Scholar 

  35. A. Mills, S. Le Hunte, J. Photochem. Photobiol. A 108, 1 (1997)

    Article  Google Scholar 

  36. D.W. Bahnemann, Israel J. Chem. 33, 115 (1993)

    Google Scholar 

  37. Y.J. Jang, C. Simer, T. Ohm, Mater. Res. Bull. 41, 67 (2006)

    Article  Google Scholar 

  38. A. Akyol, H.C. Yatmaz, M. Bayramoglu, Appl. Catal. B 54, 19 (2004)

    Google Scholar 

  39. Y. Yamaguchi, M. Yamazaki, S. Yoshihara, T. Shirakashi, J. Electroanal. Chem. 442, 1 (1998)

    Article  Google Scholar 

  40. H.F. Lin, S.C. Liao, S.W. Hung, J. Photochem. Photobiol. A 174, 82 (2005)

    Article  Google Scholar 

  41. E. Evgenidou, K. Fytianos, I. Poulios, J. Photochem. Photobiol. A 175, 29 (2005)

    Article  Google Scholar 

  42. H.C. Yatmaz, A. Akyol, M. Bayramoglu, Ind. Eng. Chem. Res. 43, 6035 (2004)

    Google Scholar 

  43. N. Daneshvar, D. Salari, A.R. Khataee, J. Photochem. Photobiol. A 162, 317 (2004)

    Article  Google Scholar 

  44. V. Kandavelu, H. Kastien, K. Ravindranathan Thampi, Appl. Catal. B 48, 101 (2004)

    Article  Google Scholar 

  45. T.A. Egerton, I.R. Tooley, J. Phys. Chem. B 108, 5066 (2004)

    Article  Google Scholar 

  46. J.I. Pankove, Optical Processes in Semiconductors (Prentice Hall, NJ, 1971)

    Google Scholar 

  47. F.P. Rotzinger, M. Gratzel, Inorg. Chem. 26, 3704 (1987)

    Article  Google Scholar 

  48. T. Ivanova, A. Harizanova, M. Surtchev, Mater. Lett. 55, 327 (2002)

    Article  Google Scholar 

  49. Z. Fu, B. Liu. G. Liao, Z. Wu, J. Cryst. Growth 193, 316 (1998)

    Article  Google Scholar 

  50. S.C. Lyu, Y. Zhang, C.J. Lee, H. Ruh, H.J. Lee, Chem. Mater. 15, 3294 (2003)

    Article  Google Scholar 

  51. J.Q. Hu, Y. Bando, J.H. Zhan, Y.B. Li, T. Sekiguchi, Appl. Phys. Lett. 83, 4414 (2003)

    Article  ADS  Google Scholar 

  52. X.L. Wu, G.G. Siu, C.L. Fu, H.C. Ong, Appl. Phys. Lett. 78, 2285 (2001)

    Article  ADS  Google Scholar 

  53. J.S. Kang, H.S. Kang, S.S. Pang, E.S. Shim, S.Y. Lee, Thin Solid Films 443, 5 (2003)

    Article  Google Scholar 

  54. K. Vanheusden, C.H. Seager, W.L. Warren, D.R. Tallant, J.A. Voigt, Appl. Phys. Lett. 68, 403 (1996)

    Article  ADS  Google Scholar 

  55. J. Chen, Z.C. Feng, P.L. Ying, C. Li, J. Phys. Chem. B 108, 12669 (2004)

    Article  Google Scholar 

  56. R. Comparelli, E. Fanizza, M.L. Curri, P.D. Cozzoli, G. Mascolo, A. Agostiano, Appl. Catal. B 60, 1 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xie Quan.

Additional information

PACS

81.07.Bc; 81.10.Dn; 81.15.Pq; 82.50.Hp; 85.60.Jb

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, H., Quan, X., Chen, S. et al. Fabrication of needle-like ZnO nanorods arrays by a low-temperature seed-layer growth approach in solution. Appl. Phys. A 89, 673–679 (2007). https://doi.org/10.1007/s00339-007-4167-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-007-4167-6

Keywords

Navigation