Skip to main content
Log in

Plasmonic laser nanoablation of silicon by the scattering of femtosecond pulses near gold nanospheres

  • Invited paper
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

We present the fabrication of nanostructures ablated on silicon(100) by the plasmonic scattering of 780 nm, 220 fs laser pulses in the near-field of gold nanospheres. We take advantage of the enhanced plasmonic scattering of ultrashort laser light in the particle near-field to ablate well-defined nanocraters. Gold nanospheres of 150 nm diameter are deposited onto a silicon surface and irradiated with a single laser pulse. We studied the effect of laser polarization on the morphology of ablated nanostructures and estimated the minimum fluence for plasmonic nanoablation. When the polarization of the incident radiation is directed at a 45° angle into the substrate surface, a near-field enhancement of 23.1±7.6 is measured, reducing the required silicon ablation fluence from 191±14 mJ/cm2 to 8.2±2.9 mJ/cm2. Enhancements are also measured for laser polarizations parallel to the substrate surface when the substrate is angled 0° and 45° to the incident irradiation, giving enhancements of 6.9±0.6 and 4.1±1.3, respectively. Generated nanocrater morphologies show a direct imprint of the particle dipolar scattering region, as predicted in our theoretical calculations. The measured near-field enhancement values agree well with the maximum field enhancements obtained in our calculations. The agreement between theory and measurements supports that the nanocraters are indeed formed by the enhanced plasmonic scattering in the near-field of the nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.A. Gorbunov, W. Pompe, Phys. Stat. Solidi A 145, 333 (1994)

    Article  Google Scholar 

  2. J. Jearsch, F. Demming, L.J. Hildenhagen, K. Dickmann, Appl. Phys. A 66, 29 (1997)

    Article  ADS  Google Scholar 

  3. K. Wilder, C.F. Quate, D. Adderton, R. Bernstein, V. Elings, Appl. Phys. Lett. 77, 2527 (1998)

    Article  ADS  Google Scholar 

  4. A. Chimmalgi, C.P. Grigoropoulos, K. Komvopoulos, J. Appl. Phys. 97, 104319 (2005)

    Article  ADS  Google Scholar 

  5. S. Nolte, B.N. Chichkov, H. Welling, Y. Shani, K. Lieberman, H. Terkel, Opt. Lett. 24, 914 (1999)

    ADS  Google Scholar 

  6. L. Wang, E.X. Jin, S.M. Uppuluri, X. Xu, Opt. Express 14, 9902 (2006)

    Article  ADS  Google Scholar 

  7. D.J. Hwang, A. Chimmalgi, C.P. Grigoropoulos, J. Appl. Phys. 99, 044905 (2006)

    Article  ADS  Google Scholar 

  8. W. Srituravanich, N. Fang, C. Sun, Q. Luo, X. Zhang, Nano Lett. 4, 1085 (2004)

    Article  ADS  Google Scholar 

  9. S.M. Huang, M.H. Hong, B. Luk’yanchuk, T.C. Chong, Appl. Phys. A 77, 293 (2003)

    ADS  Google Scholar 

  10. W. Cai, R. Piestun, Appl. Phys. Lett. 88, 111112 (2006)

    Article  ADS  Google Scholar 

  11. A.J. Heltzel, A. Battula, J.R. Howell, S.C. Chen, J. Heat Transf. 129, 53 (2007)

    Article  Google Scholar 

  12. S.M. Huang, M.H. Hong, B. Luk’yanchuk, T.C. Chong, Appl. Phys. Lett. 82, 4809 (2003)

    Article  ADS  Google Scholar 

  13. N.N. Nedyalkov, H. Takada, M. Obara, Appl. Phys. A 85, 163 (2006)

    Article  ADS  Google Scholar 

  14. N.N. Nedyalkov, T. Sakai, T. Miyanishi, M. Obara, J. Phys. D Appl. Phys. 39, 5037 (2006)

    Article  ADS  Google Scholar 

  15. P. Leiderer, C. Bartels, J. Konig-Birk, M. Mosbacher, J. Boneberg, Appl. Phys. Lett. 85, 5370 (2004)

    Article  ADS  Google Scholar 

  16. M.F. Yanik, H. Cinar, H.N. Cinar, A.D. Chisholm, Y. Jin, A. Ben-Yakar, Nature 432, 822 (2004)

    Article  ADS  Google Scholar 

  17. U.K. Tirlapur, K. Konig, Nature 418, 290 (2002)

    Article  ADS  Google Scholar 

  18. N. Shen, D. Datta, C.B. Schaffer, P. LeDuc, D.E. Ingber, E. Mazur, Mech. Chem. Biosyst. 2, 17 (2005)

    Google Scholar 

  19. A. Vogel, J. Noack, G. Huttman, G. Paltauf, Appl. Phys. B 81, 1015 (2005)

    Article  ADS  Google Scholar 

  20. H. Hovel, S. Fritz, A. Hilger, U. Kreibig, M. Vollmer, Phys. Rev. B 48, 178 (1993)

    Article  Google Scholar 

  21. S. Nolte, B.N. Chichkov, H. Welling, Y. Shani, K. Lieberman, H. Terkel, Opt. Lett. 24, 914 (1999)

    ADS  Google Scholar 

  22. J.M. Liu, Opt. Lett. 7, 196 (1982)

    Article  ADS  Google Scholar 

  23. A. Ben-Yakar, R.L. Byer, J. Appl. Phys. 98, 5316 (2004)

    Article  ADS  Google Scholar 

  24. B.J. Messinger, K. Ulrich von Raben, R.K. Chang, P.W. Barber, Phys. Rev. B 24, 649 (1981)

    Article  ADS  Google Scholar 

  25. M. Quinten, Appl. Phys. B 73, 245 (2001)

    Article  ADS  Google Scholar 

  26. S. Nolte, C. Momma, H. Jacobs, A. Tunnermann, B.N. Chichkov, B. Wellegehausen, H. Welling, J. Opt. Soc. Am. B 14, 2716 (1997)

    Article  ADS  Google Scholar 

  27. S.K. Sundaram, E. Mazur, Nature Mater. 1, 217 (2002)

    Article  ADS  Google Scholar 

  28. J. Bonse, S. Baudach, J. Kruger, W. Kautek, M. Lenzer, Appl. Phys. A 74, 19 (2002)

    Article  ADS  Google Scholar 

  29. A. Plech, V. Kotaidis, M. Lorenc, J. Boneberg, Nature Phys. 2, 44 (2006)

    Article  ADS  Google Scholar 

  30. B.S. Luk’yanchuk, Z.B. Wang, W.D. Song, M.H. Hong, Appl. Phys. A 79, 747 (2004)

    Article  ADS  Google Scholar 

  31. Y.W. Zheng, Dissertation, National University of Singapore (2002), pp. 57–59

  32. G.R. Jellison Jr., D.H. Lowndes, Appl. Phys. Lett. 51, 352 (1987)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Ben-Yakar.

Additional information

PACS

42.62.-b; 52.38.Mf; 81.65.Cf; 81.16.-c; 78.67.Bf

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eversole, D., Luk’yanchuk, B. & Ben-Yakar, A. Plasmonic laser nanoablation of silicon by the scattering of femtosecond pulses near gold nanospheres. Appl. Phys. A 89, 283–291 (2007). https://doi.org/10.1007/s00339-007-4166-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-007-4166-7

Keywords

Navigation