Skip to main content
Log in

A two-step hydrothermally grown ZnO microtube array for CO gas sensing

  • Rapid communication
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Tubular ZnO microstructure arrays were fabricated on a large scale by a two-step hydrothermal method. The porous ZnO tubular structures were then used to construct a gas sensor for CO detection. The microtube array gas sensor showed sensitive response to different concentration of CO with an optimum temperature of 250 °C. Because of the large surface to volume ratio, the sensitivity of the microtube arrays was about twice of that of the ZnO rods. Our results indicate that this simple two-step method for fabrication of large-scale tubular microstructure arrays can be potentially used in gas sensor applications with improved performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.E. Williams, Sens. Actuators B 57, 1 (1999)

    Article  ADS  Google Scholar 

  2. H. Nanto, T. Minami, S. Takta, J. Appl. Phys. 60, 482 (1986)

    Article  ADS  Google Scholar 

  3. T. Seiyama, A. Kato, K. Fjishi, M. Nagatani, Anal. Chem. 34, 1502 (1962)

    Article  Google Scholar 

  4. S. Basu, A. Dutta, Sens. Actuators B 22, 83 (1994)

    Article  Google Scholar 

  5. T. Gao, T.H. Wang, Appl. Phys. A 80, 1451 (2005)

    Article  ADS  Google Scholar 

  6. C. Li, D.H. Zhang, B. Lei, S. Han, X.L. Liu, C.W. Zhou, J. Phys. Chem. B 107, 12451 (2003)

    Article  Google Scholar 

  7. G. Sberveglieri, G. Faglia, S. Groppelli, P. Nelli, Semicond. Sci. Technol. 5, 1231 (1990)

    Article  ADS  Google Scholar 

  8. Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, H. Yan, Adv. Mater. 15, 353 (2003)

    Article  Google Scholar 

  9. H.T. Wang, B.S. Kang, F. Ren, L.C. Tien, P.W. Sadik, D.P. Norton, S.J. Pearton, J. Lin, Appl. Phys. Lett. 86, 243503 (2005)

    Article  Google Scholar 

  10. J.X. Wang, X.W. Sun, Y. Yang, H. Huang, Y.C. Li, O.K. Tan, L. Vayssieres, Nanotechnology 17, 4995 (2006)

    Article  ADS  Google Scholar 

  11. Q. Wan, T.H. Wang, Chem. Commun. 30, 3841 (2005)

    Article  Google Scholar 

  12. Y. Liu, J. Dong, P.J. Hesketh, M.L. Liu, J. Mater. Chem. 15, 2316 (2005)

    Article  Google Scholar 

  13. M. Remskar, A. Mrzel, Z. Skraba, A. Jesih, M. Ceh, J. Demsar, P. Stadelmann, F. Levy, D. Mihailovic, Science 292, 479 (2001)

    ADS  Google Scholar 

  14. D. Li, J.T. McCann, M. Marquez, Y. Xia, J. Am. Ceram. Soc. 89, 1861 (2006)

    Article  Google Scholar 

  15. X.W. Sun, S.F. Yu, C.X. Xu, C. Yuen, B.J. Chen, S. Li, Japan. J. Appl. Phys. 42, L1229 (2003)

    Article  ADS  Google Scholar 

  16. J. Goldberger, R. He, Y. Zhang, S. Lee, H. Yan, H.J. Choi, P. Yang, Nature 422, 599 (2003)

    Article  ADS  Google Scholar 

  17. J. Goldberger, R. Fan, P. Yang, Acc. Chem. Res. 39, 239 (2006)

    Article  Google Scholar 

  18. G.K. Mor, O.K. Varghese, M. Paulose, C.A. Grimes, Adv. Funct. Mater. 15, 1291 (2005)

    Article  Google Scholar 

  19. L. Vayssieres, K. Keis, A. Hagfeldt, S.E. Lindquist, Chem. Mater. 13, 4395 (2001)

    Article  Google Scholar 

  20. L. Vayssieres, K. Keis, S.E. Lindquist, A. Hagfeldt, J. Phys. Chem. B 105, 3350 (2001)

    Article  Google Scholar 

  21. L. Vayssieres, Int. J. Nanotechnol. 1, 1 (2004)

    Google Scholar 

  22. A. Wei, X.W. Sun, C.X. Xu, Z.L. Dong, Y. Yang, S.T. Tan, W. Huang, Nanotechnology 17, 1740 (2006)

    Article  ADS  Google Scholar 

  23. H. Huang, O.K. Tan, Y.C. Lee, T.D. Tran, M.S. Tse, X. Yao, Appl. Phys. Lett. 87, 163123 (2005)

    Article  ADS  Google Scholar 

  24. H.W. Ryu, B.S. Park, S.A. Akbar, W.S. Lee, K.J. Hong, Y.J. Seo, D.C. Shin, J.S. Park, G.P. Choi, Sens. Actuators B 96, 717 (2003)

    Article  Google Scholar 

  25. H.Y. Bae, G.M. Choi, Sens. Actuators B 55, 47 (1999)

    Article  Google Scholar 

  26. H. Gong, J.Q. Hu, J.H. Wang, C.H. Ong, F.R. Zhu, Sens. Actuators B 115, 247 (2006)

    Article  Google Scholar 

  27. I.D. Kim, A. Rothschild, T. Hyodo, H.L. Tuller, Nano Lett. 6, 193 (2006)

    Article  Google Scholar 

  28. R.W.J. Scott, S.M. Yang, G. Chabanis, N. Coombs, D.E. Willams, G.A. Ozin, Adv. Mater. 13, 1468 (2001)

    Article  Google Scholar 

  29. A. Ponzoni, E. Comini, G. Sberveglieri, J. Zhou, S.Z. Deng, N.S. Xu, Y. Ding Z.L. Wang, Appl. Phys. Lett. 88, 203101 (2006)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X.W. Sun.

Additional information

PACS

81.07.Bc; 78.55.Et; 07.07.Df

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, J., Sun, X., Huang, H. et al. A two-step hydrothermally grown ZnO microtube array for CO gas sensing. Appl. Phys. A 88, 611–615 (2007). https://doi.org/10.1007/s00339-007-4076-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-007-4076-8

Keywords

Navigation