Electronic structure of the molecular switch tetra-tert-butyl-azobenzene adsorbed on Ag(111)

Abstract

Occupied and unoccupied electronic states in tetra-tert-butyl-azobenzene (TBA) absorbed on Ag(111) have been investigated by one-photon and two-photon photoemission spectroscopy. These measurements allow the quantitative determination of energetic positions of the highest occupied (HOMO) and the lowest unoccupied molecular orbital (LUMO) as well as the n=1 image potential state. The assignment of the electronic states are supported by quantum chemical calculations. Experimentally a HOMO–LUMO gap of 2.85 eV is observed, whereas the gap obtained from the calculated molecular orbital energies is 0.92 eV larger. This discrepancy can be explained by image charge screening. Furthermore, two unoccupied final states located 0.18 and 0.43 eV above the vacuum level, respectively, have been identified.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    B.L. Feringa, Molecular Switches (Wiley-VCH, Weinheim, 2001)

    Google Scholar 

  2. 2.

    M. Irie (ed.), Chem. Rev. 100, 1683 (2000)

    Article  Google Scholar 

  3. 3.

    N. Tamai, O.H. Miyasaka, Chem. Rev. 100, 1875 (2000)

    Article  Google Scholar 

  4. 4.

    H. Rau, in Photochromism: Molecules and Systems, ed. by H. Dürr, H. Bouas-Laurent (Elsevier, Amsterdam, 2003), p. 165

  5. 5.

    D. Fanghänel, G. Timpe, V. Orthman, in Organic Photochromes, ed. by A.V. El’tsov (Consultants Bureau, New York, 1990), p. 105

  6. 6.

    T. Hugel, N.B. Holland, A. Cattani, L. Moroder, H.E. Gaub, Science 296, 1103 (2002)

    Article  ADS  Google Scholar 

  7. 7.

    Z.F. Liu, K. Hashimoto, A. Fujishima, Nature 347, 658 (1990)

    Article  ADS  Google Scholar 

  8. 8.

    T. Ikeda, O. Tsutsumi, Science 268, 1873 (1995)

    Article  ADS  Google Scholar 

  9. 9.

    J. Wachtveitl, S. Spörlein, H. Satzger, B. Fonrobert, C. Renner, R. Behrendt, D. Oesterhelt, L. Moroder, W. Zinth, Biophys. J. 86, 2350 (2004)

    Article  ADS  Google Scholar 

  10. 10.

    C. Zhang, M.-H. Du, H.-P. Cheng, X.-G. Zhang, A.E. Roitberg, J.L. Krause, Phys. Rev. Lett. 92, 1583011 (2004)

    Google Scholar 

  11. 11.

    H. Petek, S. Ogawa, Prog. Surf. Sci. 56, 239 (1997)

    Article  Google Scholar 

  12. 12.

    X.-Y. Zhu, Surf. Sci. Rep. 56, 1 (2004)

    Article  ADS  Google Scholar 

  13. 13.

    X.-Y. Zhu, J. Phys. Chem. B 108, 8778 (2004)

    Article  Google Scholar 

  14. 14.

    J. Güdde, W. Berthold, U. Höfer, Chem. Rev. 106, 4261 (2006)

    Article  Google Scholar 

  15. 15.

    M. Weinelt, J. Phys.: Condens. Matter 14, R1099 (2002)

    Article  ADS  Google Scholar 

  16. 16.

    T.A. Jung, R.R. Schlittler, J.K. Gimzewski, Nature 386, 696 (1997)

    Article  ADS  Google Scholar 

  17. 17.

    F. Moresco, G. Meyer, K.-H. Rieder, H. Tang, A. Gourdon, C. Joachim, Phys. Rev. Lett. 86, 672 (2001)

    Article  ADS  Google Scholar 

  18. 18.

    J. Henzel, M. Mehlhorn, H. Gawronski, K.-H. Rieder, K. Morgenstern, Angew. Chem. Int. Edit. 45, 603 (2006)

    Article  Google Scholar 

  19. 19.

    A. Kirakosian, M.J. Comstock, J. Cho, M.F. Crommie, Phys. Rev. B 71, 113409 (2005)

    Article  ADS  Google Scholar 

  20. 20.

    J.A. Miwa, S. Weigelt, H. Gersen, F. Besenbacher, F. Rosei, T.R. Linderoth, J. Am. Chem. Soc. 128, 3164 (2006)

    Article  Google Scholar 

  21. 21.

    M.J. Comstock, J. Cho, A. Kirakosian, M.F. Crommie, Phys. Rev. B 72, 153414 (2005)

    Article  ADS  Google Scholar 

  22. 22.

    B.-Y. Choi, S.-J. Kahng, S. Kim, H. Kim, H.W. Kim, Y.J. Song, J. Ihm, Y. Kuk, Phys. Rev. Lett. 96, 156106 (2006)

    Article  ADS  Google Scholar 

  23. 23.

    M. Alemani, M.V. Peters, S. Hecht, K.-H. Rieder, F. Moresco, L. Grill, J. Am. Chem. Soc. 128, 14446 (2006)

    Article  Google Scholar 

  24. 24.

    G. Füchsel, T. Klamroth, J. Dokić, P. Saalfrank, J. Phys. Chem. B 110, 16337 (2006)

    Article  Google Scholar 

  25. 25.

    C.R. Crecca, A.E. Roitberg, J. Phys. Chem. A 110, 8188 (2006)

    Article  Google Scholar 

  26. 26.

    A. Toniolo, C. Ciminelli, M. Persico, T.J. Martínez, J. Chem. Phys. 123, 234308 (2005)

    Article  ADS  Google Scholar 

  27. 27.

    T. Ishikawa, T. Noro, T. Shoda, J. Chem. Phys. 115, 7503 (2001)

    Article  ADS  Google Scholar 

  28. 28.

    P. Cattaneo, M. Persico, Phys. Chem. Chem. Phys. 1, 4739 (1999)

    Article  Google Scholar 

  29. 29.

    P.S. Kirchmann, P.A. Loukakos, U. Bovensiepen, M. Wolf, New J. Phys. 7, 113 (2005)

    Article  ADS  Google Scholar 

  30. 30.

    M.J. Frisch et al., Gaussian 03, revision c.02 (Gaussian, Inc., Wallingford, CT, 2004)

  31. 31.

    F. Jensen, Introduction to Computational Chemistry (Wiley, New York, 1999)

    Google Scholar 

  32. 32.

    A.D. Becke, J. Chem. Phys. 98, 5648 (1993)

    Article  ADS  Google Scholar 

  33. 33.

    D. Chong, O. Gritsenko, E. Baerends, J. Chem. Phys. 116, 1760 (2002)

    Article  ADS  Google Scholar 

  34. 34.

    M. Xi, M.X. Wang, S.K. Jo, B.E. Bent, P. Stevens, J. Chem. Phys. 101, 9122 (1995)

    Article  ADS  Google Scholar 

  35. 35.

    T. Vondrak, X.-Y. Zhu, J. Phys. Chem. B 103, 3449 (1999)

    Article  Google Scholar 

  36. 36.

    Q. Zhong, C. Gahl, M. Wolf, Surf. Sci. 496, 21 (2002)

    Article  ADS  Google Scholar 

  37. 37.

    P. Jakob, D. Menzel, J. Chem. Phys. 105, 3838 (1996)

    Article  ADS  Google Scholar 

  38. 38.

    M.C. Yang, T.J. Rockey, D. Pursell, H.L. Dai, J. Phys. Chem. B 105, 11945 (2001)

    Article  Google Scholar 

  39. 39.

    W.X. Huang, J.M. White, J. Phys. Chem. B 108, 5060 (2004)

    Article  Google Scholar 

  40. 40.

    P. Tegeder, M. Danckwerts, S. Hagen, A. Hotzel, M. Molf, Surf. Sci. 585, 177 (2005)

    Article  ADS  Google Scholar 

  41. 41.

    F. Reinert, G. Nicolay, S. Schmidt, D. Ehm, S. Hüfner, Phys. Rev. B 63, 115415 (2001)

    Article  ADS  Google Scholar 

  42. 42.

    R. Paniago, R. Matzdorf, G. Meister, A. Goldmann, Surf. Sci. 336, 113 (1995)

    Article  ADS  Google Scholar 

  43. 43.

    N. Pontius, V. Sametogli, H. Petek, Phys. Rev. B 72, 115105 (2005)

    Article  ADS  Google Scholar 

  44. 44.

    T. Miller, W.E. McMahon, T.-C. Chiang, Phys. Rev. Lett. 77, 1167 (1996)

    Article  ADS  Google Scholar 

  45. 45.

    J.G. Nelson, S. Kim, W.J. Gignac, R.S. Williams, J.G. Tobin, S.W. Robey, D.A. Shirley, Phys. Rev. B 32, 3465 (1985)

    Article  ADS  Google Scholar 

  46. 46.

    E.W. Plummer, W. Eberhardt, Adv. Chem. Phys. 49, 533 (1985)

    Article  Google Scholar 

  47. 47.

    P.J. Benning, D.M. Poirier, T.R. Ohno, Y. Shen, M.B. Jost, F. Stepniak, G.H. Kroll, J.H. Weaver, J. Fure, R.E. Smalley, Phys. Rev. B 45, 6899 (1992)

    Article  ADS  Google Scholar 

  48. 48.

    T. Fauster, W. Steinmann, in Electromagnetic Waves: Recent Developments in Research, ed. by P. Halevi (Elsevier, Amsterdam, 1995)

  49. 49.

    G. Moos, Ph.D Thesis, Free University Berlin (2003)

  50. 50.

    M. Alemani, L. Grill, M.V. Peters, S. Hecht, K.-H. Rieder, F. Moresco, to be published

  51. 51.

    G. Dutton, X.-Y. Zhu, J. Phys. Chem. B 106, 5975 (2002)

    Article  Google Scholar 

  52. 52.

    W. Huang, W. Wei, W. Zhao, J.M. White, J. Phys. Chem. B 110, 5547 (2006)

    Article  Google Scholar 

  53. 53.

    A. Bondi, J. Phys. Chem. 68, 441 (1964)

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to P. Tegeder.

Additional information

PACS

73.20.-r; 74.25.Jb; 79.60.-i; 79.60.Dp; 68.43.Vx

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Tegeder, P., Hagen, S., Leyssner, F. et al. Electronic structure of the molecular switch tetra-tert-butyl-azobenzene adsorbed on Ag(111). Appl. Phys. A 88, 465–472 (2007). https://doi.org/10.1007/s00339-007-4047-0

Download citation

Keywords

  • High Occupied Molecular Orbital
  • Lower Unoccupied Molecular Orbital
  • Azobenzene
  • Thermal Desorption Spectroscopy
  • High Occupied Molecular Orbital Level