Advertisement

Applied Physics A

, Volume 88, Issue 3, pp 465–472 | Cite as

Electronic structure of the molecular switch tetra-tert-butyl-azobenzene adsorbed on Ag(111)

  • P. TegederEmail author
  • S. Hagen
  • F. Leyssner
  • M.V. Peters
  • S. Hecht
  • T. Klamroth
  • P. Saalfrank
  • M. Wolf
Article

Abstract

Occupied and unoccupied electronic states in tetra-tert-butyl-azobenzene (TBA) absorbed on Ag(111) have been investigated by one-photon and two-photon photoemission spectroscopy. These measurements allow the quantitative determination of energetic positions of the highest occupied (HOMO) and the lowest unoccupied molecular orbital (LUMO) as well as the n=1 image potential state. The assignment of the electronic states are supported by quantum chemical calculations. Experimentally a HOMO–LUMO gap of 2.85 eV is observed, whereas the gap obtained from the calculated molecular orbital energies is 0.92 eV larger. This discrepancy can be explained by image charge screening. Furthermore, two unoccupied final states located 0.18 and 0.43 eV above the vacuum level, respectively, have been identified.

Keywords

High Occupied Molecular Orbital Lower Unoccupied Molecular Orbital Azobenzene Thermal Desorption Spectroscopy High Occupied Molecular Orbital Level 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B.L. Feringa, Molecular Switches (Wiley-VCH, Weinheim, 2001)Google Scholar
  2. 2.
    M. Irie (ed.), Chem. Rev. 100, 1683 (2000)CrossRefGoogle Scholar
  3. 3.
    N. Tamai, O.H. Miyasaka, Chem. Rev. 100, 1875 (2000)CrossRefGoogle Scholar
  4. 4.
    H. Rau, in Photochromism: Molecules and Systems, ed. by H. Dürr, H. Bouas-Laurent (Elsevier, Amsterdam, 2003), p. 165Google Scholar
  5. 5.
    D. Fanghänel, G. Timpe, V. Orthman, in Organic Photochromes, ed. by A.V. El’tsov (Consultants Bureau, New York, 1990), p. 105Google Scholar
  6. 6.
    T. Hugel, N.B. Holland, A. Cattani, L. Moroder, H.E. Gaub, Science 296, 1103 (2002)CrossRefADSGoogle Scholar
  7. 7.
    Z.F. Liu, K. Hashimoto, A. Fujishima, Nature 347, 658 (1990)CrossRefADSGoogle Scholar
  8. 8.
    T. Ikeda, O. Tsutsumi, Science 268, 1873 (1995)CrossRefADSGoogle Scholar
  9. 9.
    J. Wachtveitl, S. Spörlein, H. Satzger, B. Fonrobert, C. Renner, R. Behrendt, D. Oesterhelt, L. Moroder, W. Zinth, Biophys. J. 86, 2350 (2004)CrossRefADSGoogle Scholar
  10. 10.
    C. Zhang, M.-H. Du, H.-P. Cheng, X.-G. Zhang, A.E. Roitberg, J.L. Krause, Phys. Rev. Lett. 92, 1583011 (2004)Google Scholar
  11. 11.
    H. Petek, S. Ogawa, Prog. Surf. Sci. 56, 239 (1997)CrossRefGoogle Scholar
  12. 12.
    X.-Y. Zhu, Surf. Sci. Rep. 56, 1 (2004)CrossRefADSGoogle Scholar
  13. 13.
    X.-Y. Zhu, J. Phys. Chem. B 108, 8778 (2004)CrossRefGoogle Scholar
  14. 14.
    J. Güdde, W. Berthold, U. Höfer, Chem. Rev. 106, 4261 (2006)CrossRefGoogle Scholar
  15. 15.
    M. Weinelt, J. Phys.: Condens. Matter 14, R1099 (2002)CrossRefADSGoogle Scholar
  16. 16.
    T.A. Jung, R.R. Schlittler, J.K. Gimzewski, Nature 386, 696 (1997)CrossRefADSGoogle Scholar
  17. 17.
    F. Moresco, G. Meyer, K.-H. Rieder, H. Tang, A. Gourdon, C. Joachim, Phys. Rev. Lett. 86, 672 (2001)CrossRefADSGoogle Scholar
  18. 18.
    J. Henzel, M. Mehlhorn, H. Gawronski, K.-H. Rieder, K. Morgenstern, Angew. Chem. Int. Edit. 45, 603 (2006)CrossRefGoogle Scholar
  19. 19.
    A. Kirakosian, M.J. Comstock, J. Cho, M.F. Crommie, Phys. Rev. B 71, 113409 (2005)CrossRefADSGoogle Scholar
  20. 20.
    J.A. Miwa, S. Weigelt, H. Gersen, F. Besenbacher, F. Rosei, T.R. Linderoth, J. Am. Chem. Soc. 128, 3164 (2006)CrossRefGoogle Scholar
  21. 21.
    M.J. Comstock, J. Cho, A. Kirakosian, M.F. Crommie, Phys. Rev. B 72, 153414 (2005)CrossRefADSGoogle Scholar
  22. 22.
    B.-Y. Choi, S.-J. Kahng, S. Kim, H. Kim, H.W. Kim, Y.J. Song, J. Ihm, Y. Kuk, Phys. Rev. Lett. 96, 156106 (2006)CrossRefADSGoogle Scholar
  23. 23.
    M. Alemani, M.V. Peters, S. Hecht, K.-H. Rieder, F. Moresco, L. Grill, J. Am. Chem. Soc. 128, 14446 (2006)CrossRefGoogle Scholar
  24. 24.
    G. Füchsel, T. Klamroth, J. Dokić, P. Saalfrank, J. Phys. Chem. B 110, 16337 (2006)CrossRefGoogle Scholar
  25. 25.
    C.R. Crecca, A.E. Roitberg, J. Phys. Chem. A 110, 8188 (2006)CrossRefGoogle Scholar
  26. 26.
    A. Toniolo, C. Ciminelli, M. Persico, T.J. Martínez, J. Chem. Phys. 123, 234308 (2005)CrossRefADSGoogle Scholar
  27. 27.
    T. Ishikawa, T. Noro, T. Shoda, J. Chem. Phys. 115, 7503 (2001)CrossRefADSGoogle Scholar
  28. 28.
    P. Cattaneo, M. Persico, Phys. Chem. Chem. Phys. 1, 4739 (1999)CrossRefGoogle Scholar
  29. 29.
    P.S. Kirchmann, P.A. Loukakos, U. Bovensiepen, M. Wolf, New J. Phys. 7, 113 (2005)CrossRefADSGoogle Scholar
  30. 30.
    M.J. Frisch et al., Gaussian 03, revision c.02 (Gaussian, Inc., Wallingford, CT, 2004)Google Scholar
  31. 31.
    F. Jensen, Introduction to Computational Chemistry (Wiley, New York, 1999)Google Scholar
  32. 32.
    A.D. Becke, J. Chem. Phys. 98, 5648 (1993)CrossRefADSGoogle Scholar
  33. 33.
    D. Chong, O. Gritsenko, E. Baerends, J. Chem. Phys. 116, 1760 (2002)CrossRefADSGoogle Scholar
  34. 34.
    M. Xi, M.X. Wang, S.K. Jo, B.E. Bent, P. Stevens, J. Chem. Phys. 101, 9122 (1995)CrossRefADSGoogle Scholar
  35. 35.
    T. Vondrak, X.-Y. Zhu, J. Phys. Chem. B 103, 3449 (1999)CrossRefGoogle Scholar
  36. 36.
    Q. Zhong, C. Gahl, M. Wolf, Surf. Sci. 496, 21 (2002)CrossRefADSGoogle Scholar
  37. 37.
    P. Jakob, D. Menzel, J. Chem. Phys. 105, 3838 (1996)CrossRefADSGoogle Scholar
  38. 38.
    M.C. Yang, T.J. Rockey, D. Pursell, H.L. Dai, J. Phys. Chem. B 105, 11945 (2001)CrossRefGoogle Scholar
  39. 39.
    W.X. Huang, J.M. White, J. Phys. Chem. B 108, 5060 (2004)CrossRefGoogle Scholar
  40. 40.
    P. Tegeder, M. Danckwerts, S. Hagen, A. Hotzel, M. Molf, Surf. Sci. 585, 177 (2005)CrossRefADSGoogle Scholar
  41. 41.
    F. Reinert, G. Nicolay, S. Schmidt, D. Ehm, S. Hüfner, Phys. Rev. B 63, 115415 (2001)CrossRefADSGoogle Scholar
  42. 42.
    R. Paniago, R. Matzdorf, G. Meister, A. Goldmann, Surf. Sci. 336, 113 (1995)CrossRefADSGoogle Scholar
  43. 43.
    N. Pontius, V. Sametogli, H. Petek, Phys. Rev. B 72, 115105 (2005)CrossRefADSGoogle Scholar
  44. 44.
    T. Miller, W.E. McMahon, T.-C. Chiang, Phys. Rev. Lett. 77, 1167 (1996)CrossRefADSGoogle Scholar
  45. 45.
    J.G. Nelson, S. Kim, W.J. Gignac, R.S. Williams, J.G. Tobin, S.W. Robey, D.A. Shirley, Phys. Rev. B 32, 3465 (1985)CrossRefADSGoogle Scholar
  46. 46.
    E.W. Plummer, W. Eberhardt, Adv. Chem. Phys. 49, 533 (1985)CrossRefGoogle Scholar
  47. 47.
    P.J. Benning, D.M. Poirier, T.R. Ohno, Y. Shen, M.B. Jost, F. Stepniak, G.H. Kroll, J.H. Weaver, J. Fure, R.E. Smalley, Phys. Rev. B 45, 6899 (1992)CrossRefADSGoogle Scholar
  48. 48.
    T. Fauster, W. Steinmann, in Electromagnetic Waves: Recent Developments in Research, ed. by P. Halevi (Elsevier, Amsterdam, 1995)Google Scholar
  49. 49.
    G. Moos, Ph.D Thesis, Free University Berlin (2003)Google Scholar
  50. 50.
    M. Alemani, L. Grill, M.V. Peters, S. Hecht, K.-H. Rieder, F. Moresco, to be publishedGoogle Scholar
  51. 51.
    G. Dutton, X.-Y. Zhu, J. Phys. Chem. B 106, 5975 (2002)CrossRefGoogle Scholar
  52. 52.
    W. Huang, W. Wei, W. Zhao, J.M. White, J. Phys. Chem. B 110, 5547 (2006)CrossRefGoogle Scholar
  53. 53.
    A. Bondi, J. Phys. Chem. 68, 441 (1964)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • P. Tegeder
    • 1
    Email author
  • S. Hagen
    • 1
  • F. Leyssner
    • 1
  • M.V. Peters
    • 2
  • S. Hecht
    • 2
  • T. Klamroth
    • 3
  • P. Saalfrank
    • 3
  • M. Wolf
    • 1
  1. 1.Fachbereich PhysikFreie Universität BerlinBerlinGermany
  2. 2.Max-Planck-Institut für KohlenforschungMülheim an der RuhrGermany
  3. 3.Theoretische Chemie, Institut für ChemieUniversität PotsdamPotsdam-GolmGermany

Personalised recommendations