Skip to main content
Log in

Theory of optical excitation and relaxation phenomena at semiconductor surfaces: linking density functional and density matrix theory

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

A theory for the description of optical excitation and the subsequent phonon-induced relaxation dynamics of nonequilibrium electrons at semiconductor surfaces is presented. In the first part, the fundamental dynamical equations for electronic occupations and polarisations are derived using density matrix formalism (DMT) for a surface-bulk system including the interaction of electrons with the optical field and electron–phonon interactions. The matrix elements entering these equations are either determined empirically or by density functional theory (DFT) calculations. In the subsequent parts of the paper, the dynamics at two specific semiconductor surfaces are discussed in detail. The electron relaxation dynamics underlying a time-resolved two photon photoemission experiment at an InP surface is investigated in the limit of a parabolic four band model. Moreover, the electron relaxation dynamics at a Si(100) surface is analysed. Here, the coupling parameters and the band structure are obtained from an DFT calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Lindberg, S.W. Koch, Phys. Rev. B 38, 3342 (1988)

    Article  ADS  Google Scholar 

  2. H. Haug, S.W. Koch, Quantum Theory of the Optical and Electronic Properties of Semiconductors (World Scientific, Singapore, 1990)

    Google Scholar 

  3. V.M. Axt, S. Mukamel, Rev. Mod. Phys. 70, 145 (1998)

    Article  ADS  Google Scholar 

  4. F. Rossi, T. Kuhn, Rev. Mod. Phys. 74, 895 (2002)

    Article  ADS  Google Scholar 

  5. J. Dabrowski, M. Scheffler, Appl. Surf. Sci. 56, 15 (1992)

    Article  Google Scholar 

  6. M. Reichelt, T. Meier, S.W. Koch, M. Rohlfing, Phys. Rev. B 68, 045330 (2003)

    Article  ADS  Google Scholar 

  7. E. Knoesel, A. Hotzel, M. Wolf, Phys. Rev. B 57, 12812 (1998)

    Article  ADS  Google Scholar 

  8. U. Höfer, I.L. Shumay, C. Reuß, U. Thomann, W. Wallauer, T. Fauster, Science 277, 1480 (1997)

    Article  Google Scholar 

  9. C. Gahl, K. Ishioka, Q. Zhong, A. Hotzel, M. Wolf, Faraday Discuss. 117, 191 (2000)

    Article  Google Scholar 

  10. Q. Zhong, C. Gahl, M. Wolf, Surf. Sci. 496, 21 (2002)

    Article  Google Scholar 

  11. C.A. Schmuttenmaer, C.C. Miller, J.W. Herman, J. Cao, D.A. Mantell, Y. Gao, R.J.D. Miller, Chem. Phys. 205, 91 (1996)

    Article  Google Scholar 

  12. V.P. Zhukov, O. Andreyev, D. Hoffman, M. Bauer, M. Aeschlimann, E.V. Chulkov, P.M. Echenique, Phys. Rev. B 70, 233106 (2004)

    Article  ADS  Google Scholar 

  13. L. Töben, L. Gundlach, R. Ernstorfer, R. Eichberger, T. Hannappel, F. Willig, A. Zeiser, J. Förstner, A. Knorr, P.H. Hahn, W.G. Schmidt, Phys. Rev. Lett. 94, 067601 (2005)

    Article  ADS  Google Scholar 

  14. M. Weinelt, M. Kutschera, T. Fauster, M. Rohlfing, Phys. Rev. Lett. 92, 126801 (2004)

    Article  ADS  Google Scholar 

  15. M. Bonn, D.N. Denzler, S. Funk, M. Wolf, S.-S. Wellershoff, J. Hohlfeld, Phys. Rev. B 61, 1101 (2000)

    Article  ADS  Google Scholar 

  16. R. Haight, Surf. Sci. Rep. 21, 275 (1995)

    Article  Google Scholar 

  17. A. Rettenberger, R. Haight, Phys. Rev. Lett. 76, 1912 (1996)

    Article  ADS  Google Scholar 

  18. T. Hertel, E. Knoesel, M. Wolf, G. Ertl, Phys. Rev. Lett. 76, 535 (1996)

    Article  ADS  Google Scholar 

  19. T. Klamroth, P. Saalfrank, U. Höfer, Phys. Rev. B 64, 35420 (2001)

    Article  ADS  Google Scholar 

  20. S. Ramakrishna, F. Willig, A. Knorr, Appl. Phys. A 78, 247 (2004)

    Article  ADS  Google Scholar 

  21. S. Ramakrishna, F. Willig, A. Knorr, Surf. Sci. 558, 159 (2004)

    Article  ADS  Google Scholar 

  22. A. Zeiser, N. Bücking, J. Götte, J. Förstner, P. Hahn, W. Schmidt, A. Knorr, Phys. Stat. Solidi B 241, R60 (2004)

    Article  ADS  Google Scholar 

  23. A. Zeiser, N. Bücking, J. Förstner, A. Knorr, Phys. Rev. B 71, 245309 (2005)

    Article  ADS  Google Scholar 

  24. G. Onida, L. Reining, A. Rubio, Rev. Mod. Phys. 74, 601 (2002)

    Article  Google Scholar 

  25. M.C. Desjonquères, D. Spanjaard, Concepts in Surface Physics (Springer, Berlin, 1996)

    Google Scholar 

  26. F. Bechstedt, R. Enderlein, Semiconductor Surfaces and Interfaces (Akademie-Verlag, Berlin, 1988)

    Google Scholar 

  27. G. Czycholl, Theoretische Festkörperphysik (Vieweg, Braunschweig/Wiesbaden, 2000)

    Google Scholar 

  28. F. Bechstedt, Principles of Surface Science (Springer, Berlin, 2003)

    Google Scholar 

  29. N.W. Ashcroft, N.D. Mermin, Solid State Physics (Holt-Saunders International Editions, Tokyo, 1981)

    Google Scholar 

  30. H. Lüth, Surfaces and Interfaces of Solids (Springer, Berlin, 1993)

    Google Scholar 

  31. H. Haken, Quantenfeldtheorie des Festkörpers (B.G. Teubner, Stuttgart, 1973)

    Google Scholar 

  32. J.D. Jackson, Classical Electrodynamics (John Wiley & Sons Inc., New York, 1999)

    MATH  Google Scholar 

  33. H. Haug, A.P. Jauho, Quantum Kinetics in Transport and Optics of Semiconductors, in: Springer Series in Solid-State Sciences, vol. 123 (Springer, Berlin, 1998)

  34. T. Kuhn. Density matrix theory of coherent ultrafast dynamics, in: Theory of Transport Properties of Semiconductor Nanostructures, ed. by E. Schöll (Chapman & Hall, London, 1998), p. 173

  35. V.M. Axt, A. Stahl, Z. Phys. B 93, 195 (1994)

    Article  Google Scholar 

  36. M. Lindberg, R. Binder, Y.Z. Hu, S.W. Koch, Phys. Rev. B 49, 16942 (1994)

    Article  ADS  Google Scholar 

  37. J. Fricke, Ann. Phys. 252, 479 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  38. I. Waldmüller, J. Förstner, S.-C. Lee, A. Knorr, M. Woerner, K. Reimann, R.A. Kaindl, T. Elsaesser, R. Hey, K.H. Ploog, Phys. Rev. B 69, 205307 (2004)

    Article  ADS  Google Scholar 

  39. T. Feldtmann, L. Schneebeli, M. Kira, S.W. Koch, Phys. Rev. B 73, 155319 (2006)

    Article  ADS  Google Scholar 

  40. J. Förstner, C. Weber, J. Danckwerts, A. Knorr, Phys. Rev. Lett. 91, 127401 (2003)

    Article  ADS  Google Scholar 

  41. I. Waldmüller, J. Förstner, S.C. Lee, A. Knorr, M. Woerner, K. Reimann, R.A. Kaindl, T. Elsaesser, R. Hey, K.H. Ploog, Phys. Rev. B 69, 205307 (2004)

    Article  ADS  Google Scholar 

  42. W. Schäfer, M. Wegener, Semiconductor Optics and Transport Phenomena (Springer, Berlin, 2002)

    Google Scholar 

  43. P.Y. Yu, M. Cardona, Fundamentals of Semiconductors (Springer, Berlin, 1996)

    MATH  Google Scholar 

  44. W. Pötz, P. Vogl, Phys. Rev. B 24, 2025 (1981)

    Article  ADS  Google Scholar 

  45. C.G. van der Walle, Phys. Rev. B 39, 1871 (1989)

    Article  ADS  Google Scholar 

  46. R. DelSole, R. Girlanda, Phys. Rev. B 48, 11789 (1993)

    Article  ADS  Google Scholar 

  47. F. Steininger, A. Knorr, T. Stroucken, P. Thomas, S.W. Koch, Phys. Rev. Lett. 77, 550 (1996)

    Article  ADS  Google Scholar 

  48. I. Waldmüller, J. Förstner, A. Knorr, Nonequilibrium Physics at Short Time Scales, Chapt. Self-consistent Projector Operator Theory of Intersubband Absorbance in Semiconductor Quantum Wells (Springer, Berlin, 2003)

  49. P. Hohenberg, W. Kohn, Phys. Rev. B 136, 864 (1964)

    Article  ADS  MathSciNet  Google Scholar 

  50. W. Kohn, L.J. Sham, Phys. Rev. A 140, 1133 (1965)

    Article  ADS  MathSciNet  Google Scholar 

  51. R. Haight, J. Bokor, J. Stark, R.H. Storz, R.R. Freeman, P.H. Bucksbaum, Phys. Rev. Lett. 54, 1302 (1985)

    Article  ADS  Google Scholar 

  52. W.G. Schmidt, F. Bechstedt, Surf. Sci. 409, 474 (1998)

    Article  Google Scholar 

  53. W.G. Schmidt, F. Bechstedt, N. Esser, M. Pristovsek, C. Schultz, W. Richter, Phys. Rev. B 57, 14596 (1998)

    Article  ADS  Google Scholar 

  54. A.M. Frisch, P. Vogt, S. Visbeck, T. Hannappel, F. Willig, W. Braun, W. Richter, J. Bernholc, W.G. Schmidt, N. Esser, Appl. Surf. Sci. 166, 224 (2000)

    Article  Google Scholar 

  55. W.G. Schmidt, N. Esser, A.M. Frisch, P. Vogt, J. Bernholc, F. Bechstedt, M. Zorn, T. Hannappel, S. Visbeck, F. Willig, W. Richter, Phys. Rev. B 61, R16335, (2000)

  56. L. Töben, L. Gundlach, T. Hannappel, R. Ernstorfer, R. Eichberger, F. Willig, Appl. Phys. A 78, 239 (2004)

    Article  ADS  Google Scholar 

  57. M. Bockstedte, A. Kley, J. Neugebauer, M. Scheffler, Comput. Phys. Commun. 107, 187 (1997)

    Article  MATH  ADS  Google Scholar 

  58. A. Ramstad, G. Brocks, P.J. Kelly, Phys. Rev. B 51, 14504 (1995)

    Article  ADS  Google Scholar 

  59. M. Rohlfing, S.G. Louie, Phys. Rev. Lett. 83, 856 (1999)

    Article  ADS  Google Scholar 

  60. P. Eggert, Theoretische Untersuchung von Vielteilcheneffekten auf Silizium-Halbleiteroberflächen, PhD thesis, FU Berlin (2005)

  61. J. van Heys, M. Lindenblatt, E. Pehlke, Phase Trans. 78, 773 (2005)

    Article  Google Scholar 

  62. J. Fritsch, P. Pavone, Surf. Sci. 344, 195 (1995)

    Article  Google Scholar 

  63. W. Hoyer, M. Kira, S.W. Koch, Phys. Rev. B 67, 155113 (2003)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Buecking.

Additional information

PACS

71.15.Mb; 73.20.At; 73.43.Cd; 78.20.Bh

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buecking, N., Scheffler, M., Kratzer, P. et al. Theory of optical excitation and relaxation phenomena at semiconductor surfaces: linking density functional and density matrix theory. Appl. Phys. A 88, 505–518 (2007). https://doi.org/10.1007/s00339-007-4043-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-007-4043-4

Keywords

Navigation