Skip to main content

Advertisement

Log in

Nanoindentation mapping of a wood-adhesive bond

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

A mapping experiment of a wood phenol–resorcinol–formaldehyde adhesive bond was performed by means of grid nanoindentation. The variability of the modulus of elasticity and the hardness was evaluated for an area of 17 μm by 90 μm. Overall, the modulus of elasticity of the adhesive was clearly lower than the modulus of wood cell walls, whereas the hardness of the adhesive was slightly higher compared to cell walls. A very slight trend of decreasing modulus of elasticity was found with increasing distance from the immediate bond line. However, the trend was superimposed by a high variability of the modulus of elasticity in dependence on the position in the wood cell wall. The unexpectedly high variation of the modulus between 12 and 24 GPa may be explained by the interaction between the helical orientation of the cellulose microfibrils in the S2 layer of the wood cell wall and the geometry of the three-sided Berkovich type indenter pyramid used. Corresponding to the very slight decrease in modulus with increasing distance from the bond line, a similar but clearer trend was found for hardness. Both trends of changing mechanical properties of wood cell walls with varying distance from the bond line are attributed to effects of adhesive penetration into the wood cell wall.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.R. VanLandingham, J.S. Villarrubia, W.F. Guthrie, G.F. Meyers, Macromol. Symp. 167, (2001)

  2. J. Konnerth, A. Jaeger, J. Eberhardsteiner, U. Mueller, W. Gindl, J. Appl. Polym. Sci. 102, 2 (2006)

    Article  Google Scholar 

  3. J.R. Gregory, S.M. Spearing, Compos. Sci. Technol. 65, 3 (2005)

    Article  Google Scholar 

  4. A. Gouldstone, H.J. Koh, K.Y. Zeng, A.E. Giannakopoulos, S. Suresh, Acta Mater. 48, 9 (2000)

    Article  Google Scholar 

  5. A.C. Fischer-Cripps, Vacuum 58, 4 (2000)

    Article  Google Scholar 

  6. A. Urena, J. Rams, M.D. Escalera, M. Sanchez, Compos. Sci. Technol. 65, 13 (2005)

    Article  Google Scholar 

  7. S.L. Gao, E. Mader, Compos. Part A Appl. S 33, 4 (2002)

    Article  Google Scholar 

  8. J.G. Williams, F.P. Li, I. Miskioglu, J. Adhes. Sci. Technol. 19, 3 (2005)

    Article  Google Scholar 

  9. J.K. Kim, A. Hodzic, J. Adhes. 79, 4 (2003)

    Google Scholar 

  10. D.I. Ebenstein, L.A. Pruitt, Nano Today 1, 3 (2006)

    Google Scholar 

  11. R. Wimmer, B.N. Lucas, T.Y. Tsui, W.C. Oliver, Wood Sci. Technol. 31, 2 (1997)

    Google Scholar 

  12. W. Gindl, H.S. Gupta, T. Schöberl, H.C. Lichtenegger, P. Fratzl, Appl. Phys. A Mater. 79, (2004)

  13. S.H. Lee, S.Q. Wang, G.M. Pharr, Abstr. Pap. Am. Chem. Soc. 231, (2006)

  14. W.T.Y. Tze, S. Wang, T.G. Rials, G.M. Pharr, S.S. Kelley, Compos. Part A Appl. S (2006), in press

  15. S. Wang, S.H. Lee, W.T.Y. Tze, T.G. Rials, G.M. Pharr, in: International Conference on Nanotechnology (2006)

  16. G.A. Zickler, T. Schoberl, O. Paris, Philos. Mag. 86, 10 (2006)

    Article  Google Scholar 

  17. J.G. Swadener, J.Y. Rho, G.M. Pharr, J. Biomed. Mater. Res. A 57, 1 (2001)

    Article  Google Scholar 

  18. W. Gindl, T. Schoberl, Compos. Part A Appl. S 35, 11 (2004)

    Article  Google Scholar 

  19. W. Gindl, T. Schoberl, G. Jeronimidis, Int. J. Adhes. Adhes. 24, 4 (2004)

    Google Scholar 

  20. W. Gindl, T. Schoberl, G. Jeronimidis, Int. J. Adhes. Adhes. 24, 6 (2004)

    Google Scholar 

  21. G. Constantinides, K.S.R. Chandran, F.J. Ulm, K.J. Van Vliet, Mater. Sci. Eng. A 430, 1 (2006)

    Article  Google Scholar 

  22. A.R. Spurr, J. Ultrastruct. Res. 26, 1 (1969)

    Article  Google Scholar 

  23. A. Hodzic, S. Kalyanasundaram, J.K. Kim, A.E. Lowe, Z.H. Stachurski, Micron 32, 8 (2001)

    Article  Google Scholar 

  24. A. Hodzic, J.K. Kim, Z.H. Stachurski, Polymer 42, 13 (2001)

    Article  Google Scholar 

  25. W.C. Oliver, G.M. Pharr, J. Mater. Res. 7, 6 (1992)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Konnerth.

Additional information

PACS

81.70.-q

Rights and permissions

Reprints and permissions

About this article

Cite this article

Konnerth, J., Valla, A. & Gindl, W. Nanoindentation mapping of a wood-adhesive bond. Appl. Phys. A 88, 371–375 (2007). https://doi.org/10.1007/s00339-007-3976-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-007-3976-y

Keywords

Navigation