Applied Physics A

, Volume 87, Issue 3, pp 485–490 | Cite as

Growth and properties of SiGe structures obtained by selective epitaxy on finite areas

  • L. VescanEmail author
  • T. Stoica
  • E. Sutter


Selective epitaxy growth (SEG) was used to build SiGe optoelectronic devices and nanoscale structures for the future nanotechnology. The growth of strained SiGe on small areas offers some advantages for improvement of device performances. In particular, with relative large area light emitting diodes (LED), the emission efficiency of SiGe diodes can be increased up to 0.1% internal value at room temperature. Further improvements are expected for nanoscale devices. By SEG on mesas, Ge islands can be obtained ordered in lines along the mesas edges. Precise localization of Ge dots can be obtained by SEG in very small oxide windows and even only one island/window is formed. It was shown that nanostructures of size down to 5 nm can be grown by this method.


Wetting Layer SiGe Layer Island Formation Plastic Relaxation Patterning Technique 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. Vescan, T. Stoica, E. Sutter, Structural and Luminescence Properties of Ordered Ge Islands on Patterned Substrates, in: Lateral Alignment of Epitaxial Quantum Dots, ed. by O.G. Schmidt, Springer Series on Nanoscience and Technology (2007), ISBN: 978-3-540-46935-3Google Scholar
  2. 2.
    L. Vescan, Mater. Sci. Eng. B 28, 1 (1994)CrossRefGoogle Scholar
  3. 3.
    T. Stoica, L. Vescan, J. Cryst. Growth 131, 32 (1993)CrossRefGoogle Scholar
  4. 4.
    L. Vescan, T. Stoica, M. Goryll, K. Grimm, Mater. Sci. Eng. B 51, 166 (1998)CrossRefGoogle Scholar
  5. 5.
    L. Vescan, C. Dieker, A. Souifi, T. Stoica, J. Appl. Phys. 81, 6709 (1997)CrossRefADSGoogle Scholar
  6. 6.
    T. Stoica, L. Vescan, B. Holländer, Semicond. Sci. Technol. 18, 409 (2003)CrossRefADSGoogle Scholar
  7. 7.
    T. Stoica, L. Vescan, J. Appl. Phys. 93, 4461 (2003)CrossRefADSGoogle Scholar
  8. 8.
    T. Stoica, L. Vescan, J. Appl. Phys. 94, 4400 (2003)CrossRefADSGoogle Scholar
  9. 9.
    T. Stoica, L. Vescan, A. Mück, B. Holländer, G. Schöpe, Physica E 16, 359 (2003)CrossRefADSGoogle Scholar
  10. 10.
    L. Vescan, T. Stoica, B. Holländer, Mater. Sci. Eng. B 89, 49 (2002)CrossRefGoogle Scholar
  11. 11.
    L. Vescan, T. Stoica, J. Appl. Phys. 91, 10119 (2002)CrossRefADSGoogle Scholar
  12. 12.
    L. Vescan, T. Stoica, J. Luminesc. 80, 485 (1999)CrossRefGoogle Scholar
  13. 13.
    T. Stoica, L. Vescan, E. Sutter, J. Appl. Phys. 95, 7707 (2004)CrossRefADSGoogle Scholar
  14. 14.
    L. Vescan, T. Stoica, B. Holländer, A. Nassiopoulou, A. Olzierski, I. Raptis, E. Sutter, Appl. Phys. Lett. 82, 3517 (2003)CrossRefADSGoogle Scholar
  15. 15.
    L. Vescan, J. Cryst. Growth 194, 173 (1998)CrossRefGoogle Scholar
  16. 16.
    T. Couteau, M. McBride, D. Riley, Semicond. Int. 21, 95 (1998)Google Scholar
  17. 17.
    L.H. Nguyen, V. Le Thanh, D. Debarre, V. Yam, D. Bouchier, Mater. Sci. Technol. B 101, 199 (2003)Google Scholar
  18. 18.
    M. Liehr, J.E. Lewis, G.W. Rubloff, J. Vac. Sci. Technol. A 5, 1559 (1987)CrossRefADSGoogle Scholar
  19. 19.
    T. Stoica, E. Sutter, Nanotechnology 17, 4912 (2006)CrossRefADSGoogle Scholar
  20. 20.
    G. Jin, J.L. Liu, S.G. Thomas, Y.H. Luo, K.L. Wang, Appl. Phys. Lett. 75, 2752 (1999)CrossRefADSGoogle Scholar
  21. 21.
    T.I. Kamins, R.S. Williams, Appl. Phys. Lett. 71, 1201 (1997)CrossRefADSGoogle Scholar
  22. 22.
    E.S. Kim, N. Usami, Y. Shiraki, Appl. Phys. Lett. 72, 1618 (1998)ADSGoogle Scholar
  23. 23.
    M. Goryll, L. Vescan, H. Lüth, Mater. Sci. Eng. B 101, 9 (2003)CrossRefGoogle Scholar
  24. 24.
    P. Sutter, M.G. Lagally, Phys. Rev. Lett. 84, 4637 (2000)CrossRefADSGoogle Scholar
  25. 25.
    J. Tersoff, B.J. Spencer, A. Rastelli, H. von Känel, Phys. Rev. Lett. 89, 196104 (2002)CrossRefADSGoogle Scholar
  26. 26.
    P. Sutter, E. Sutter, L. Vescan, Appl. Phys. Lett. 87, 161916 (2005)CrossRefADSGoogle Scholar
  27. 27.
    P. Sutter, P. Zahl, E. Sutter, Appl. Phys. Lett. 82, 3454 (2003)CrossRefADSGoogle Scholar
  28. 28.
    P. Sutter, I. Schick, W. Ernst, E. Sutter, Phys. Rev. Lett. 91, 176102 (2003)CrossRefADSGoogle Scholar
  29. 29.
    G.-H. Lu, M. Cum, F. Liu, Phys. Rev. B 72, 125415 (2005)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.AachenGermany
  2. 2.IBN-1Forschungszentrum JülichJülichGermany
  3. 3.Center for Functional NanomaterialsBrookhaven National LaboratoryUptonUSA

Personalised recommendations